Experimental Study of the Effect of Anisotropy on the Orientation of Breakouts in Wells

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

On rock samples taken from the Cenomanian horizon of the PK1 formation of the gas and gas condensate fields of the Arctic shelf of Russia, direct physical modeling of the formation under the action of equal component stresses of breakouts in wells directed along the normal and along the occurrence was carried out. In the first case, the shape of the breakouts was cylindrical, and in the second case, in the form of two caverns. Such a form of breakouts, when interpreting well logging, is usually assumed to be caused by an unequal component stress field, which obviously does not correspond to the results of the experiments. Independent experiments were also carried out to determine the anisotropy of the elastic and strength properties of the studied rock. It was found that the studied rock has a specific type of strength anisotropy, not directly related to the weakening along the bedding. It is shown that this type of strength anisotropy can lead to the formation of breakouts of the observed shape. The main purpose of the article is to draw attention to the fact that stress anisotropy is not necessarily the main or only cause of the observed breakouts in wells. The results can be used in the design and development of hydrocarbon fields and underground gas storages, as well as in the interpretation of well measurements to determine the natural stress field in the Earth's crust.

作者简介

K. Ustinov

Ishlinsky Institute for Problems in Mechanics RAS

Email: perfolinkgeo@yandex.ru
Moscow, 119526 Russia

V. Karev

Ishlinsky Institute for Problems in Mechanics RAS

Email: perfolinkgeo@yandex.ru
Moscow, 119526 Russia

Yu. Kovalenko

Ishlinsky Institute for Problems in Mechanics RAS

Email: perfolinkgeo@yandex.ru
Moscow, 119526 Russia

S. Barkov

Ishlinsky Institute for Problems in Mechanics RAS

Email: perfolinkgeo@yandex.ru
Moscow, 119526 Russia

V. Khimulia

Ishlinsky Institute for Problems in Mechanics RAS

Email: perfolinkgeo@yandex.ru
Moscow, 119526 Russia

N. Shevtsov

Ishlinsky Institute for Problems in Mechanics RAS

编辑信件的主要联系方式.
Email: perfolinkgeo@yandex.ru
Moscow, 119526 Russia

参考

  1. Башкатов А.Д. Предупреждение пескования скважин. М.: Недра, 1981. 176 с.
  2. Врачев В.В., Шафаренко В.П., Шустров В.П. Пескопроявление при эксплуатации ПХГ // Газовая промышленность. 1999. № 11. С. 62.
  3. Басниев К.С., Будзуляк Б.В., Зиновьев В.В. Повышение надежности и безопасности эксплуатации подземных хранилищ газа. М.: ООО “Недра-Бизнесцентр”. 2005. 391 с.
  4. Zoback M.D. Reservoir Geomechanics. California: Cambridge University Press, 2007. 443 p. https://doi.org/10.1017/CBO9780511586477.
  5. Zang A., Stephansson O. Stress field of the earth’s crust. Dordrecht: Springer, 2010. 322 p..
  6. Ljunggren C., Chang Y., Janson T., Christiansson R. An overview of rock stress measurement methods // Int. J. Rock Mech. Min Sci 2003. № 40. P. 975–989.
  7. Timoshenko S.P., Goodier J.N. Theory of Elasticity. NY: McGraw-Hill Book Company Inc., 1953. 471 p.
  8. Germanovich L.N., Galybin A.N., Dyskin A.V., Mokhel A.N., Dunayevsky V. Borehole stability in laminated rock. In G. Barla (Ed.) // Pred. Perform. Rock Mech. Rock Eng., Torino. CRC Press/Balkema, 1996. V. 2, P. 767–776.
  9. Vernik L., Zoback M.D. Strength anisotropy of crystalline rock: Implications for assessment of in situ stresses from wellbore breakouts // Rock Mech. Contrib. Challenges. Proceedings of the 31st US Symposium on Rock Mech. Balkema, Rotterdam, 1990. ARMA-90-0841. https://doi.org/10.1201/9781003078944
  10. Kaiser P.K., Guenot A., Morgenstern N.R. Deformation of small tunnels. IV. Behaviour during failure // Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1985. V. 22. P. 141–152. https://doi.org/10.1201/9781003078944
  11. Коваленко Ю.Ф., Устинов К.Б., Карев В.И. Геомеханический анализ образования вывалов на стенках скважин // Известия РАН МТТ. 2022. № 6. С. 157–172.
  12. Karev V.I., Kovalenko Yu.F. Triaxial loading system as a tool for solving geotechnical problems of oil and gas production. True Triaxial Testing of Rocks. Leiden, CRC Press. Balkema. 2013. P. 301–310.
  13. Karev V.I., Kovalenko Yu.F., Ustinov K.B. Modeling deformation and failure of anisotropic rocks nearby a horizontal well // J. Min. Sci. 2017. V. 53. № 3. P. 425–433. https://doi.org/10.1134/S1062739117032319
  14. Klimov D.M., Karev V.I., Kovalenko Yu.F., Ustinov K.B. Mechanical-mathematical and experimental modeling of well stability in anisotropic media // Mech. Solids. 2013. V. 48. P. 357–363. https://doi.org/10.3103/S0025654413040018
  15. Karev V.I., Kovalenko Y.F., Ustinov K.B. Geomechanics of Oil and Gas Wells. Advances in Oil and Gas Exploration and Production. Springer International Publishing Cham: Switzerland. 2020. 166 p. https://doi.org/10.1007/978-3-030-26608-0
  16. Экспериментальное исследование влияния анизотропии на ориентацию вывалов в скважинах. (Видео) URL: https://ipmnet.ru/labs/geo/breakouts2022 (дата обращения: 21.09.2022).
  17. Zhuravlev A.B., Ustinov K.B. On values characterizing the degree of elastic anisotropy of transversely isotropic rocks. Role of Shear Modulus. // Mech. Solids. 2019. Vol. 54. № 6. P. 958–967. https://doi.org/10.3103/S0025654419060104
  18. Lekhnitskii S.G. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco, 1963. 404 p.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (561KB)
3.

下载 (1MB)
4.

下载 (834KB)
5.

下载 (27KB)
6.

下载 (41KB)

版权所有 © К.Б. Устинов, В.И. Карев, Ю.Ф. Коваленко, С.О. Барков, В.В. Химуля, Н.И. Шевцов, 2022

##common.cookie##