Effect of the lipid extract from the marine green algae Codium fragile (Suringar) Hariot 1889 on metabolic reactions under acute stress

封面

如何引用文章

全文:

详细

It was studied the effect of a lipid extract isolated from the marine green algae Codium fragile (Suringar) Hariot on the liver and blood biochemical indicators in mice under impact of acute stress (vertical fixation by the dorsal neck fold). The pharmacological effect of the C. fragile lipid extract was manifested in the restoration of lipid and carbohydrate metabolism, as well as in the normalization of the indicators of the endogenous antioxidant defense system under stress effect. The biological activity of the lipid extract of C. fragile, probably, is due to the action of its constituent polyunsaturated fatty acids of the ω-3 and ω-6 families. The lipid extract of C. fragile was not inferior to the reference Omega-3 preparation in restoring the body’s metabolic reactions caused by the impact of the stress, however, it showed higher antioxidant activity.

全文:

受限制的访问

作者简介

S. Fomenko

V. I. Il’ichevPacific Oceanological Institute. FEB RAS

编辑信件的主要联系方式.
Email: sfomenko@poi.dvo.ru
俄罗斯联邦, 690041, Vladivostok

N. Kushnerova

V. I. Il’ichevPacific Oceanological Institute. FEB RAS

Email: sfomenko@poi.dvo.ru
俄罗斯联邦, 690041, Vladivostok

V. Sprygin

V. I. Il’ichevPacific Oceanological Institute. FEB RAS

Email: sfomenko@poi.dvo.ru
俄罗斯联邦, 690041, Vladivostok

E. Drugova

V. I. Il’ichevPacific Oceanological Institute. FEB RAS

Email: sfomenko@poi.dvo.ru
俄罗斯联邦, 690041, Vladivostok

L. Lesnikova

V. I. Il’ichevPacific Oceanological Institute. FEB RAS

Email: sfomenko@poi.dvo.ru
俄罗斯联邦, 690041, Vladivostok

V. Merzlyakov

V. I. Il’ichevPacific Oceanological Institute. FEB RAS

Email: sfomenko@poi.dvo.ru
俄罗斯联邦, 690041, Vladivostok

参考

  1. Гурская А. И., Отвалко Е. А., Яцковская Н. М., Чиркин А. А. Биохимические критерии острого и хронического стресса при иммобилизации крыс // Вестник ВДУ. 2017. Т. 98, № 1. С. 61–65.
  2. Карпищенко А. И., Алипов А. Н., Алексеев В. В. Медицинские лабораторные технологии. Руководство по клинической лабораторной диагностике. 2013. Т. 2. Изд-во ГЭОТАР-Медиа. 792 с.
  3. Кушнерова Н. Ф., Спрыгин В. Г., Фоменко С. Е., Рахманин Ю. А. Влияние стресса на состояние липидного и углеводного обмена печени, профилактика // Гигиена и санитария. 2005. № 5. С. 17–21.
  4. Кушнерова Н. Ф., Фоменко С. Е., Спрыгин В. Г., Момот Т. В. Влияние липидного комплекса экстракта из морской красной водоросли Ahnfeltia tobuchiensis (Kanno et Matsubara) Makienko на биохимические показатели плазмы крови и мембран эритроцитов при экспериментальном стрессе // Биология моря. 2020. Т. 46, № 4, С. 269–276. https://doi.org/10.31857/S0134347520040051
  5. Новгородцева Т. П., Караман Ю. К., Бивалькевич Н. В., Жукова Н. В. Использование биологически активной добавки к пище на основе липидов морских гидробионтов в эксперименте на крысах // Вопросы питания. 2010. Т. 79, № 2. С. 24–27.
  6. Солин А. В., Корозин В. И., Ляшев Ю. Д. Влияние регуляторных пептидов на стресс-индуцированные изменения липидного обмена у экспериментальных животных // Бюл. экспер. биол. 2013. Т. 155, № 3. С. 299–301.
  7. Титлянов Э. А., Титлянова Т. В. Морские растения стран Азиатско–Тихоокеанского региона, их использование и культивирование. Владивосток: Дальнаука, 2012. 377 с.
  8. Фоменко С. Е., Кушнерова Н. Ф., Спрыгин В. Г., Момот Т. В. Нарушение обменных процессов в печени крыс под действием стресса // Тихоокеанский медицинский журнал. 2013. № 2. С. 67–70.
  9. Фоменко С. Е., Кушнерова Н. Ф., Спрыгин В. Г., Момот Т. В. Антиоксидантные и стресс-протекторные свойства экстракта из морской зеленой водоросли Ulva lactuca Linnaeus, 1753 // Биология моря. 2016. Т. 42, № 6. С. 465–470. https://doi.org/10.1134/S1063074016060031
  10. Хотимченко С. В. Липиды морских водорослей-макрофитов и трав. Структура, распределение, анализ. Владивосток: Дальнаука, 2003. 230 с.
  11. AhnJ., Kim M. J., Yoo A., Ahn J., Ha T., Jung C. H., Seo H. D., Jang Y. J. Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance // Food Chemistry. 2021. V. 353. P. 129–463. https://doi.org/10.1016/j.foodchem.2021.129463
  12. Amenta J. S. A rapid chemical method for quantification of lipids separatid by thin-layer chromatography // J. Lipid Res. 1964. V. 5. P. 270–272. https://doi.org/10.1016/S0022-2275(20)40251-2
  13. Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. V. 37. № 8. P. 911–917. https://doi.org/10.1139/o59-099
  14. Burk R. F., Lawrence R. A., Lane J. M. Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration. Effect of selenium deficiency // J. Clin. Invest. 1980. V. 65, № 5. P. 1024–1031. https://doi.org/10.1172/JCI109754
  15. Carreau J. P., Dubacq J. P. Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts // J. Chromatogr. 1978. V. 151, № 3. P. 384–390. https://doi.org/10.1016/S0021-9673(00)88356-9
  16. Chapman V. J., Chapman D. J. Seaweeds and Their Uses. 3Edn. Chapman & Hall, New York, NY (USA) 1980. P. 25–42. http://dx.doi.org/10.1007/978-94-009-5806-7
  17. Christie W. W. Equivalent chain-lengths of methyl ester derivatives of fatty acids on gas chromatography A reappraisal // J. Chromatogr. 1988. V. 447. P. 305–314. https://doi.org/10.1016/0021-9673(88)90040-4
  18. Chrousos G. P. Stress and disorders of the stress system // Nat. Rev. Endocrinol. 2009. № 5. P. 374–381. https://doi.org/10.1038/nrendo.2009.106
  19. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS No. 123). Strasbourg. 1986. http://conventions.coe.int
  20. Folch J., Less M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues // J. Biol. Chem. 1957. V. 226, № 1. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  21. Goecke F., Hernandez V., Bittner M., Gonzalez M., Becerra J., Silva M. Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile // Revista de Biologia Marina y Oceanografia. 2010. V. 45, № 2. P. 325–330. https://doi.org/10.4067/S0718-19572010000200014
  22. Harris W.S, Miller M., Tighe A. P., Davidson M. H., Schaefer E. J. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives // Atherosclerosis. 2008. V. 197. P. 12–24. https://doi.org/10.1016/j.atherosclerosis.2007.11.008
  23. Hulbert A. I., Turner N., Storlien L. H., Else P. L. Dietary fats and membrane function: implications for metabolism and disease // Biol. Rev. Camb. Philos. Soc. 2005. V. 80, Is. 1. P. 155–169. https://doi.org/10.1017/s1464793104006578
  24. Jump D. B., Depner C. M., Tripathy S., Lytle K. A. Potential for Dietary omega-3 Fatty Acids to Prevent Nonalcoholic Fatty Liver Disease and Reduce the Risk of Primary Liver Cancer // Adv. Nutr. 2015. V. 6, № . 6. P. 694–702. https://doi.org/10.3945/an.115.009423
  25. Khan S. A., Makki A. Dietary Changes with Omega-3 Fatty Acids Improves the Blood Lipid Profile of Wistar Albino Rats with Hypercholesterolaemia // International Journal of Medical Research & Health Sciences. 2017. V. 6, № . 3. P. 34–40.
  26. Khotimchenko S., Vaskovsky V., Titlyanova T. Fatty acids of marine algae from the Pacific coast of North California // Botanica Marina. 2002. V. 45. P. 17–22. https://doi.org/10.1515/BOT.2002.003
  27. Kim J., Choi J. H., Oh T., Ahn B., Unno T. Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice // Nutrient. 2020. V. 12. P. 1848. https://doi.org/10.3390/nu12061848
  28. KomalF., Khan M. K., Imran M., Ahmad M. H., Anwar H., Ashfaq U. A., AhmadN., MasroorA., Ahmad R. S., Nadeem M., Nisa M. U. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model // J. Transl. Med. 2020. V. 18. P. 349–360. https://doi.org/10.1186/s12967-020-02519-1
  29. Lee C., Park G. H., Ahn E. M., Kim B. A., Park C. I., Jang J. H. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice // Fitoterapia. 2013. V. 86. P. 54–63. https://doi.org/10.1016/j.fitote.2013.01.020
  30. Nieto N., Fernandez M. I., Torres M. I., Ríos A., Suarez M. D. Dietary monounsaturated n-3 and n-6 long-chain polyunsaturated fatty acids affect cellular antioxidant defense system in rats with experimental ulcerative colitis induced by trinitrobenzene sulfonic acid // Gil. Dig. Dis. Sci. 1998. V. 43, № 12. P. 2678–2687. https://doi.org/10.1023/a:1026655311878
  31. Ortiz J., Uquiche E., Robert P., Romero N., Quitral V., Llantén C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera // European Journal of Lipid Science and Technology 2009. V. 111, № 4. P. 320–327. https://doi.org/10.1002/ejlt.200800140
  32. Patten A. R., Brocardo P. S., Christie B. R. Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure // J. Nutr. Biochem. 2013. V. 24, № 5. P. 760–769. https://doi.org/10.1016/j.jnutbio.2012.04.003
  33. Pereira A. G., Fraga-Corral M., Garcia-Oliveira P., Lourenco Lopes C., Carpena M., Prieto M. A., Simal-Gandara J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study // Mar. Drugs. 2021. V. 19. P. 178–198. https://doi.org/10.3390/md19040178
  34. Ravussin E. Adiponectin enhances insulin action by decreasing ectopic fat deposition // J. Pharmacogenomics. 2002. V.2, № 1. P. 4–7 https://doi.org/10.1038/sj.tpj.6500068
  35. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay // Free Radical Biology and Medicine. 1999. V. 26, № 9–10. P. 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3
  36. Refaat B., Abdelghany A. H., Ahmad J., Abdalla O. M., Elshopakey G. E., Idris S., El-Boshy M. Vitamin D(3) enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat // Biofactors. 2022. V. 48. № 2. P. 498–513. https://doi.org/10.1002/biof.1804
  37. Richard D., Kefi K., Barbe U., Bausero P., Visioli F. Polyunsaturated fatty acids as antioxidants // Pharmacol. Res. 2008. V. 57. № 6. P. 451–455. https://doi.org/10.1016/j.phrs.2008.05.002
  38. Sahin E., Gumuёslu S. Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold) // Clinical and Experimental Pharmacology and Physiology. 2007. V. 34, № 5–6, P. 425–431. https://doi.org/10.1111/j.1440-1681.2007.04584.x
  39. Sanchez-Machado D., Lopez-Cervantes J., Lopez-Hernandez J., Paseiro-Losada P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004. V. 85. P. 439–444. http://dx.doi.org/10.1016/j.foodchem.2003.08.001
  40. Seo H-D, Lee E., Ahn J., Hahm J-H, HaT-Y., LeeD-H, Jung C. H. Codium fragile reduces adipose tissue expansion and fatty liver incidence by downregulating adipo- and lipogenesis // J. Food Biochem. 2022. 00: e 14395. P. 1–9. https://doi.org/10.1111/jfbc.14395
  41. Svetaсhev V. I., Vaskovsky V. Е. A simplified technique for thin-layer microchromatography of lipids // J. Chromatography. 1972. V. 6. P. 376–378. https://doi.org/10.1016/s0021-9673(01)91245-2
  42. Van Gent C. M., Roseleur O. J., Van Der Bijl P. The detection of cerebrosides on thin-layer chromatograms with an anthrone spray reagent // J. Chromatogr. 1973. V. 85, № 1. P. 174–176. https://doi.org/10.1016/S0021-9673(01)91884-9
  43. Vascovsky V. E., Kostetsky E. Y., Vasendin I. M. Universal Reagent for Phospholipid Analysis // J. Chromatography. 1975. V. 114. P. 129–141. https://doi.org/10.1016/s0021-9673(00)85249-8
  44. Vaskovsky V. E., Khotimchenko S. V. HPTLC of Polar Lipids of Algae and Other Plants // J. Chromatography. 1982. V. 5. P. 635–636. https://doi.org/10.1002/jhrc.1240051113

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Effect of lipid extract of codium and Omega-3 on weight parameters of mice under stress. Changes are statistically significant: * – p < 0.05, ** – p < 0.01, *** – p < 0.001 – when compared with control; + – p < 0.05, ++ – p < 0.01, +++- p < 0.001 – when compared with the 2nd group (stress) for Figs. 1–3.

下载 (103KB)
3. Fig. 2. The effect of lipid extract of codium and Omega-3 on biochemical parameters of blood plasma of mice under stress.

下载 (93KB)
4. Fig. 3. The effect of lipid extract of codium and Omega-3 on the indices of antioxidant system of blood plasma and liver of mice under stress.

下载 (95KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##