Emission of gaseous nitrogen oxides in soils of boreal forests (review)

封面

如何引用文章

全文:

详细

Denitrification losses of nitrogen-containing gases in the biome of boreal forests are discussed. In the soils of coniferous and deciduous forests of Western Europe, 0.57 ± 0.2 and 1.0 ± 0.2 kg N-N2O/ha/ year are lost during denitrification. In North America this figure was 0.35 ± 0.29 kg N-N2O/ha/yr for all stands. The emission of N2O from forest soils correlated with the input of nitrogen from the atmosphere with = 0.47 in coniferous forests and with = 0.68 in deciduous plantations, returning to the atmosphere up to 30% of the nitrogen supplied with atmospheric precipitation. With a high input of nitrogen from the atmosphere, the emission of nitrogen-containing gases reached 20 kg N /ha /yr. Of these, NO, N2O, and N2 accounted for 21, 15, and 64%. Measurements of NO and especially N2 emissions remain very rare, leading to incomplete estimates of denitrification losses. Denitrification remains the most complex process in the nitrogen cycle, with no definitive methods for measuring it.

全文:

受限制的访问

作者简介

S. Razgulin

Institute of Forest Science RAS

编辑信件的主要联系方式.
Email: kriador@yandex.ru
俄罗斯联邦, st. Sovetskaya d. 21, Uspenskoe village, Odintsovsky district, Moscow region, 143030

参考

  1. Ананьева Н.А., Иващенко К.В., Стольникова Е.В., Степанов А.Л., Кудеяров В.Н. Особенности определения нетто-продуцирования N2O почвами // Почвоведение. 2015. № 6. С. 702–714. https://doi.org/10.7868/S0032180X15060027
  2. Благодатский С.А. Микробная биомасса и моделирование цикла азота в почве. Автореферат диссертации д. б. н. (03.02.03, 03.02.13). Пущино, 2011. 40 с.
  3. Гришакина И.Е. Особенности микробной трансформации азота в почвах южной тайги (на примере ЦЛГПБЗ). Автореферат диссертации к. б. н. (03.00.07, 03.00.27). М.: МГУ, 2007. 25 с.
  4. Климова А.Ю., Степанов А.Л., Манучарова Н.А. Особенности трансформации соединений азота и углерода в олиготрофной торфяной почве // Почвоведение. 2019. № 10. С. 1198–1202. https://doi.org/10.1134/S0032180X19100046
  5. Комарова Т.В., Васенев И.И., Поветкин В.А. Экологическая оценка почвенных потоков парниковых газов в сукцессиях зарастания залежи Центрально-Лесного заповедника // Материалы V конференции ЛАМП (Лаборатория агроэкологического мониторинга, моделирования и прогнозирования экосистем РГАУ-МСХА имени К.А. Тимирязева) / Под ред. И.И. Васенева. М.: “Принт Формула”, 2015. С. 90–96.
  6. Кромка М., Степанов А.Л., Умаров М.М. Восстановление закиси азота микробной биомассой в почвах // Почвоведение. 1991. № 8. C. 121–126.
  7. Кудеяров В.Н. Эмиссия закиси азота из почв в условиях применения удобрений (аналитический обзор) // Почвоведение. 2020. № 10. C. 1192–1205. https://doi.org/10.31857/S0032180X2010010X
  8. Курганова И.Н., Типе Р., Лопес де Гиреню В.О. Динамика выделения N2O из пахотных и лесных почв при чередовании замерзания и оттаивания // Почвоведение. 2004. № 11. С. 1375–1384.
  9. Мамай А., Федорец Н., Степанов А. Процессы азотфиксации и денитрификации в подзолистых почвах хвойных и мелколиственных лесов среднетаежной подзоны Карелии // Лесоведение. 2013. № 1. С. 66–74.
  10. Меняйло О.В., Матвиенко А.И., Макаров М.И., Ченг Ш.-К. Роль азота в регуляции цикла углерода в лесных экосистемах // Лесоведение. 2018. № 2. С. 143–159. https://doi.org/10.7868/S0024114818020067
  11. Разгулин С.М. Цикл азота в экосистемах южной тайги Европейской России. М.: Товарищество научных изданий КМК, 2022. 161 с.
  12. Реймерс Н.Ф. Природопользование. М.: Мысль, 1990. 639 с.
  13. Умаров М.М., Кураков А.В., Степанов А.Л. Микробиологическая трансформация азота в почве. М.: Геос, 2007. 137 с.
  14. Федорова Р.И., Милехина Е.И., Илюхина Н.И. О возможности метода газообмена для обнаружения жизни вне Земли // Известия АН СССР. Серия биологическая. 1973. № 6. С. 797–806.
  15. Alm J., Saarnio S., Nykanen H. Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands // Biogeochemistry. 1999. V. 44. P. 163–186. https://doi.org/10.1023/A:1006074606204
  16. Ambus P., Zechmeister-Boltenstern S. Denitrification and N-Cycling in Forest Ecosystems. Biology of the Nitrogen Cycle. 2007. P. 343–358.
  17. Aurangojeb M., Klemedtsson L., Rütting T., He H., Weslien P., Banzhaf S. Nitrous oxide emissions from Norway spruce forests on drained organic and mineral soil // Сanadian Journal of Forest Research. 2017. V. 47. P. 1482–1487. https://doi.org/abs/10.1139/cjfr-2016-0541
  18. Barton L., Mclay C., Schipper L., Smith C. Annual denitrificaftion rates in agricultural and forest soils: a reviev // Australian Journal of Soil Research. 1999. V. 37. P. 1079–1093.
  19. Borken W., Beese F., Brumme R., Lamersdorf N. Long-term reduction in nitrogen and proton inputs did not affect atmospheric methane uptake and nitrous oxide emission from a German spruce forest soil // Soil Biology & Biochemistry. 2002. V. 34. P. 181–51819.
  20. Borken W., Beese F. Control of nitrous oxide emissions in European beech, Norway spruce and Scots pine forests // Biogeochemistry. 2005. V. 76. P. 141–159. https://doi.org/10.1007/s10533-005-2901-8
  21. Bowden R.D., Steudler P.A., Mellilo J.M., Aber J.D. Annual nitrous oxide fluxes from temperate forest soils in the nord heastern United States // Journal of Geophysical Research: Atmospheres. 1990. V. 95. P. 13997–14005.
  22. Bowden R.D., Steudler P.A., Mellilo J.M., Aber J.D. Effect of nitrogen additions on annual nitrous oxide fluxes from temperate forest soils in the northeastern United States // Journal of Geophysical. Research: Atmospheres. 1991. V. 96. P. 9321–9328.
  23. Bowden R.D., Rullo G., Stevens G.R., Steudler P.A. Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest // Journal Environmental Quality. 2000. V. 29. P. 268–276. https://doi.org/10.2134/jeq2000.00472425002900010034x
  24. Brumme R., Borken W., Finke S. Hierarchical control of nitrous oxide emissions in forest ecosystems // Global Biogeochemical Cycles. 1999. V. 13. P. 1137–1148. https://doi.org/10.1029/1999GB900017
  25. Вutterbach-Bahl K., Gasche R., Breuer L., Papen N. Fluxes of NO and N2O from temperate forest type, deposition and of liming on the NO and N2O emissions // Nutrient Cycling in Agroecosystems. 1997. V. 48. P. 79–90.
  26. Вutterbach-Bahl K., Willibald G., Papen N. Soil core method for direct simultaneous determination of N2 and N2O emissions from forest soils // Plant & Soil. 2002а. V. 240. P. 105–116. https://doi.org/10.1023/A:1015870518723
  27. Вutterbach-Bahl K., Gasche R., Willibald G., Papen N. Excange of N-gases at the Hogwald Forest – A summary // Plant & Soil. 2002б. V. 240. P. 117–123.
  28. Butterbach-Bahl K., Baggs E., Dannenmann M., Kiese R., Zechmeister-Boltensterne S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? // Philosohhical. Transactions Royal Society Lond. B. Biol. Sci. 2013. 368. P. 20130122. https://doi.org/10.1098/rstb.2013.0122
  29. Corre M., Pennock D.J., Kessel C.V., Elliot D.K. Estimation of annual nitrous oxide emissions from transitional grassland-forest region in Saskatchevan Canada // Biogeochemistry. 1999. V. 44. P. 29–49. https://doi.org/10.1023/A:1006025907180
  30. Dai Z., Yu M., Chen H., Zhao H., Huang Y., Su W., Xia F. et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems // Global Ghange Biology. 2020. V. 26. P. 5267–5276. https://doi.org/10.1111/gcb.15211
  31. Del Grosso S., Smith W., Kraus D., Massad R., Vogeler I., Fuchs K. Approaches and concepts of modelling denitrification: increased process understanding using observational data can reduce uncertainties // Current Opinion in Environmental Sustainability. 2020. V. 47. P. 37–45. https://doi.org/10.1016/j.cosust.2020.07.003
  32. van Dijk S., Duyzer J. Nitric oxide emissions from forest soils // Journal of Geophysical Research: Atmospheres. 1999. V. 104. P. 1595–1596. https://doi.org/10.1029/1999JD900195
  33. Gineyts R., Niboyet A. Nitrification, denitrification, and related functional genes under elevated CO2: A meta-analysis in terrestrial ecosystems // Global Ghange Biology. 2023. V. 29. P. 1839–1853. https://doi.org/10.1111/gcb.16568
  34. Goldberg S.D., Borken W., Gebauer G. N2O emission in a Norway spruce forest due to soil frost: concentration and isotope profiles shed a new light on an old story // Biogeochemistry. 2010. V. 97. P. 21–30. https://doi.org/10.1007/s10533-009-9294-z
  35. Goodroad L., R. Keeney D. Nitrous Oxide Emission from forest, Marsh, and Prairie Ecosystems // Journal Environmental Quality. 1984. V. 13. P. 448–452.
  36. van Groenigen J., Huygens D., Boeckx P., Kuyper Th., Lubbers I., Rutting T., Groffman P. The soil N cycle: new insights and key challenges // SOIL. 2015. V. 1. P. 235–256. https://doi.org/10.5194/soil-1-235-2015
  37. Groffman P., Tiedje J. Denitrificaftion in a north temperate forest soils: spatial and temporal patterns at the landskape and seasonal scales // Soil Biology & Biochemistry. 1989. V. 21. P. 613–620. https://doi.org/10.1016/0038-0717(89)90053-9
  38. Groffman P., Driskoll C., Fachey T., Hardy J., Fitzhugh R., Tierney J. Effect of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest // Biogeochemistry. 2001. V. 56. P. 191–213. https://doi.org/10.1023/A:1013024603959
  39. Groffman P., Altabet M., Boёhlke J., Butterbach-Bahl K., David M., Firestone M., Giblin A., Kana T., Nielsen L., Voytek M. Methods For Measuring Denitrification: Diverse Approaches To A Difficult Problem // Ecological Applications. 2006a. 16 (6). P. 2091–2122. https://doi.org/10.1890/1051-0761(2006)
  40. Groffman P., Hardy J., Driskoll C., Fachey T. Snow depth, soil freezing, and fluxes of carbon dioxide nitrous oxide and methane in a northern hardwood forest // Global Change Biology. 2006б. V. 12. P. 1748–1760. https://doi.org/10.1111/j.1365-2486.2006.01194.
  41. Groffman P., Hardy J., Fashn-Kann S., Driskoll C., Cleavitt N., Fachey T., Fisk M. Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landskape // Biogeochemistry. 2011. V. 102. P. 223–238. https://doi.org/10.1007/S10533-010-9436-3
  42. Gushon G.H., Feller M.C. Asymbiotic nitrogen fixation and denitrificaftion in a mature forest in coastal British Columbia // Сanadian Journal of Forest Research. 1989. V. 19. P. 1194–2000.
  43. Hentschel K., Borken W., Matzner E. Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil // Journal Plant Nutrition Soil Science. 2008. V. 17. P. 699–606. https://doi.org/10.1002/JPLN.200700154
  44. Jungkunst H., Bargsten A., Timme M., Glatzel S. Spatial variability of nitrous oxide emissions in unmanaged old-growth beech forest // Journal Plant Nutrition Soil Science. 2012. V. 175. P. 739–749. https://doi.org/10.1002/jpln.201100412
  45. Kellman L., Kavanaugh K. Nitrous oxide dynamics in managed northern forest soil profiles: is production offset by consumption? // Biogeochemistry. 2008. V. 90. P. 115–128. https://doi.org/10.1007/s 10533.008.9237.0
  46. Kitzler B., Zechmeister-BoltcnstemS., Holtermann C., Skiba U., Butterbach-Bahl K. Nitrous oxide emission from two beech forests subjected to different nitrogen loads // Biogeosciences. 2006. V. 3. P. 293–310. https://doi.org/10.5194/bg-3-293-2006
  47. Klemedson L., Klemedson K.A., Maidan F., Weslien P. Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N~deposition // Biology and Fertility of Soils. 1997. V. 25. P. 290–295. https://doi.org/10.1007/s003740050317
  48. Li Z., Tang Z., Song Z., Chen W., Tian D., Tang S. et al. Variations and controlling factors of soil denitrification rate // Global Ghange Biology. 2022. V. 28. P. 2133–2145. https://doi.org/10.1111/gcb.16066.
  49. Llado S., Lуpez-Mondejar R., Baldrian P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change // Microbiology and Molecular Biology Reviews. 2017. V. 81 (2). e00063-16. https://doi.org/10.1128/MMBR.00063–16
  50. Lubbers I., Berg M., De Deyn G., van der Putten W., van Groenigen J.W. Soil fauna diversity increases CO2 but suppresses N2O emissions from soil // Global Change Biology. 2020. V. 26. P. 1886–1898. https://doi.org/10.1111/gcb.14860
  51. Luo G., Bruggemann N., Gasche W., Grote R., Butterbach-Bahl K. Decadal variability of soil CO2, NO, N2O, and CH4 fluxes at the Hoglwald Forest, Germany // Biogeosciences. 2012. V. 9. P. 1741–1763. https://doi.org/10.5194/bg-9-1741-2012
  52. Maljnen M., Hytonen J., Martikainen P.J. Cold-season nitrous oxide dynamics in a drained boreal peatland differ depending on land-use practice // Сanadian Journal of Forest Research. 2010. V. 40. P. 565–572. https://doi.org/10.1139/X10-004
  53. Matson A., Pennock D., Bedard-Hau A. Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada // Forest Ecology & Management. 2009. V. 258. P. 1073–1083. https://doi.org/10.1016/j.foreco.2009.05.034
  54. Merril A., Zak D. Factors controlling denitrificaftion rates in upland and swamp forest // Сanadian Journal of Forest Research. 1992. V. 22. P. 1597–1604.
  55. Mogge B. Nitrous oxide emissions and denitrification N-losses from forest soils in the Bornhoved Lake region (Northern Germany) // Soil Biology & Biochemistry. 1998. V. 30. P. 703–710. https://doi.org/10.1016/S0038-0717(97)00205-8
  56. Mogge B., Kaiser E-A., Munch J-C. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhoved Lake region: influence of organic fertilizers and land-use // Soil Biology & Biochemistry. 1999. V. 31. P. 1245–1252. https://doi.org/10.1016/S0038-0717(99)00039-5
  57. Oertel C., Matschullat J., Zurba K., Zimmermann F., Erasmi S. Greenhouse gas emissions from soils – A review // Chemie der Erde. 2016. V. 76. P. 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
  58. Ojanen P., Minkkinen K., Alm J., Pentilla T. Soil-atmosphere CO2, CH4 and N2O fluxes in boreal forestry-drainage peatland // Forest Ecology & Management. 2010. V. 260. P. 411–421. https://doi.org/10.1016/j.foreco.2010.04.036
  59. Oremland R.S., Capone D.G. Use of “specific” inhibitors in biogeochemistry and microbial ecology // Advances in Microbial Ecology. 1988. V. 10. P. 285–383.
  60. Peichl M., Arain M.A., Ullan S., Moore T.R. Carbon dioxide, methane and nitrous oxide exchanges in an age-sequence of temperate pine forests // Global Change Biology. 2010. V. 16. P. 2198–2212. https://doi.org/10.1111/j.1365-2486.2009.02066.x
  61. Peterjohn W.T., McGervey R.J., Sexstone A.J., Christ M.J., Foster C.J., Adams M.B. Niitrous oxide production in two forested watersheds exhibiting symptoms of nitrogen saturation // Сanadian Journal of Forest Research. 1998. V. 28. P. 1723–1732. https://doi.org/10.1139/cjfr-28-11-1723
  62. Pilegaard C., Skiba U., Ambus P., Beier C., Brtiggemann N., Butterbach-Bahl K. et. al. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O) // Biogeosciences. 2006. V. 3. P. 651–661. https://doi.org/10.5194/bg-3-651-2006
  63. Raivonen M., Bonn B., Sanz M., Vesala T., Kulmala M., Hari P. UV-induced NOx emissions from Scots pine: Сould they originate from photolysis of deposited HNO3? // Atmospheric Environment. 2006. V. 40. P. 6201–6213. https://doi.org/10.14214/df.71
  64. Regina R., Mykanen H., Maijanen M., Silvola J., Martikainen P.J. Emissions of N2O and NO and net nitrogen mineralization in a boreal forested peatland treated with different nitrogen compounds // Сanadian Journal of Forest Research. 1998. V. 28. P. 132–140. https://doi.org/10.1139/x97-198
  65. Saari P., Saarnio S., Kukkonen J., Akkanen J., Heinonen J., Saari V., Alm J. DOC and N20 dynamics In upland and peatland forest soils after clear-cutting, and soil preparation // Biogeochemistry. 2009. V. 94. P. 217–231. https://doi.org/10.1007/s10533.009.9320.1
  66. Schmidt J., Conrad R., Seiler W. Emission of nitrous oxide from temperate forest soils into the atmosphere // Journal Atmospheric Chemistry. 1988. V. 6. P. 95–115. https://doi.org/10.1007/BF00048334
  67. Schmitt A., Glaser W., Borken W., Matzner E. Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil // Journal Plant Nutrition Soil Science. 2008. V. 17. P. 707–718. https://doi.org/10.1002/jpln.200700334
  68. Schulte-BispingH., Brumme R., Priesack E. Nitrous oxide emission inventory of German forest soils // Journal of Geophysical. Research: Atmospheres. 2003. V. 108. P. 41–32. https://doi.org/10.1029/2002JD002292
  69. Schulte-BispingH., Beese F. N-fluxes and N-turnover in a mixed beech–pine forest under low N-inputs // European Journal of Forest Research. 2016. V. 135. P. 229–241. https://doi.org/10.1007/s10342-015-0931-x
  70. Teepe R., Brumme R., Beese E. Nitrous oxide emissions from frozen soils under agricultural, fallou and forest land // Soil Biology & Biochemistry. 2000. V. 32. P. 1807–1810. https://doi.org/10.1016/S0038-0717(00)00078-X
  71. Teepe R., Beese R., Ludwig B. Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing // Soil science. 2004. V. 55. P. 357–362. https://doi.org/10.1111/j.1365-2389.2004.00602.x
  72. Tian H., Yang J., Xu R., Lu C., Canadell J., Davidson E. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty // Global Ghange Biology. 2019. V. 25. P. 640–659. https://doi.org/10.1111/gcb.14514
  73. Tietema A., Bouten W., Wartenberg P.E. Nitrous oxide dynamics in an oak-beech forest ecosystem in the Netherlands // Forest Ecology & Management. 1991. V. 44. P. 53–61.
  74. Venterea R., Groffman P., Castro M., Verchot L. et. al. Soil emissions of nitric oxide in two forest watersheds subjected to elevated N inputs // Forest Ecology & Management. 2004. V. 196. P. 335–349. https://doi.org/10.1016/S0378-1127(04)00238-5
  75. Vermes J., Myrold D. Denitrification in forest soils of Oregon // Сanadian Journal of Forest Research. 1992. V. 22. P. 504–512.
  76. Ullah S., Zinati G. Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff // Biogeochemistry. 2006. V.81. P. 253–267. https://doi.org/10.1007/s10533-006-9040-8
  77. Wolf I., Brumme R. Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils // Soil Science Society America Journal. 2003. V. 67. P. 1862–1868. https://doi.org/10.2136/sssaj2003.1862. https://doi.org/10.1111/gcb.15791
  78. Wu Y-F., Whitaker J., Toet S., Bradley A., Davies C., McNamara N. Diurnal variability in soil nitrous oxide emissions is a widespread phenomenon // Global Gange Biology. 2021. V. 27. P. 4950–4966. https://doi.org/10.1111/gcb.15791
  79. Xu H., Yu M., Cheng X. Abundant fungal and rare bacterial taxa jointly reveal soil nutrient cycling and multifunctionality in uneven-aged mixed plantations // Ecological Indicators. 2021. V. 129. 107932. https://doi.org/10.1016/j.ecolind.2021.107932
  80. Zhang H., Tang C., Berninger F., Bai S., Wang H., Wang Y. Intensive forest harvest increases N2O emission from soil: A meta-analysis // Soil Biology & Biochemistry. 2022. V. 172. 108712. https://doi.org/10.1016/j.soilbio.2022.108712

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##