Использование сети гаплотипов пластидной ДНК для реконструкции филогении рода Rosa L. (Rosaceae)

Обложка

Цитировать

Полный текст

Аннотация

Мы реконструировали генеалогию гаплотипов пластидного межгенного спейсера ndhC-trnV и филогенетические отношения крупных таксономических групп в роде Rosa с использованием методов статистической парсимонии, максимального правдоподобия и NeighborNet. Согласно полученным нами результатам, большинство видов шиповника может быть объединено в три большие группы, приблизительно соответствующие таксономическим секциям: Pimpinellifoliae, Rosa (бывшая Cinnamomeae) и Synstylae + Chinenses + Gallicanae + Caninae. Их отношения мы оцениваем, как широко парафилетические, так как первая группа оказывается предковой для второй и третьей. Четвертую группу, отделенную от первых трех большим числом мутационных шагов, образовали последовательности R. persica (подрод Hulthemia). Мы полагаем, что R. persica вместе с североамериканскими R. minutifolia и R. stellata (секция Minutifoliae) представляют собой единственные сохранившиеся реликты древней группы шиповников, некогда широко распространенной в северном полушарии. Две филогенетические линии, представленные в рамках гибридогенной секции Caninae возникли независимо друг от друга от разных материнских предков, относящихся к секции Synstylae.

Полный текст

Доступ закрыт

Об авторах

И. А. Шанцер

Главный ботанический сад им. Н. В. Цицина РАН

Автор, ответственный за переписку.
Email: ischanzer@gmail.com
Россия, 127276, Москва, Ботаническая ул., д. 4

А. В. Федорова

Главный ботанический сад им. Н. В. Цицина РАН

Email: ischanzer@gmail.com
Россия, 127276, Москва, Ботаническая ул., д. 4

И. Г. Мещерский

Институт проблем экологии и эволюции им. А. Н. Северцова РАН

Email: ischanzer@gmail.com
Россия, 119071, Москва, Ленинский пр., д. 33

Список литературы

  1. Бузунова И. О. Rosa L. // Флора Восточной Европы / Ред. Цвелев Н. Н. С.-Пб.: Мир и семья, 2001. Т. 10. С. 329–361.
  2. Шанцер И. А. Филогения и систематика недавно дивергировавших групп на примере рода Rosa // Труды Зоологического института РАН. 2011. Приложение № 2. С. 202–216.
  3. Шанцер И. А., Вагина А. В., Остапко В. М. Критическое исследование шиповников (Rosa L.) заповедника “Хомутовская степь” // Бюлл. Моск. о-ва исп. прир., отд. биол. 2011. Т. 116. Вып. 3. С. 38–49.
  4. Borchsenius F. FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. 2009. Published online at http://www.aubot.dk/FastGap_home.htm
  5. Becker H. F. The fossil record of the genus Rosa. Bulletin of the Torrey Botanical Club. 1963. V. 90. P. 99–110.
  6. Bruneau A., Starr J. R., Joly S. Phylogenetic relationships in the genus Rosa: new evidence from plastid DNA sequences and an appraisal of current knowledge // Syst. Bot. 2007. V. 32. № 2. P. 366–378. doi: 10.1600/036364407781179653
  7. Chen M., Zhang C., Gao X. The complete plastid genome sequence of Rosa pricei (Rosaceae) // Mitochondrial DNA Part B. 2019. V. 4. № 1. P. 1918–1919. doi: 10.1080/23802359.2019.1611394
  8. Chen X., Liu Y., Sun J., Wang L., Zhou S. The complete plastid genome sequence of Rosa acicularis in Rosaceae // Mitochondrial DNA Part B. 2019. V. 4. № 1. P. 1743–1744. doi: 10.1080/23802359.2019.1610100
  9. Clement M., Posada D., Crandall K. A. TCS: a computer program to estimate gene genealogies // Molec. Ecol. 2000. V. 9. P. 1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x
  10. Crandall K. A., Templeton A. R. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction // Genetics. 1993. V. 134. P. 959–969. doi: 10.1093/genetics/134.3.959
  11. Crépin F. Nouvelle classification des roses // Extrait du Journal des Roses. Drosne: Melun E., 1891. V. 3–5. P. 3–30.
  12. Crépin F. Primitiae monographiae Rosarum. Matériaux pour servir a l’histoire des Roses. Gand, Marché aux Grains: Annoot-Braeckman, 1869.
  13. Criscuolo A., Gribaldo S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments // B.M.C. Evol. Biol. 2010. V. 10: 210. doi: 10.1186/1471-2148-10-210
  14. Cui W. H., Zhong M. C., Du X. Y., Qu X. J., Jiang X. D., Sun Y. B., Wang D., Sui-Yun Chen S. Y., Hu J. Y. The complete plastid genome sequence of a rambler rose, Rosa wichuraiana (Rosaceae) // Mitochondrial DNA Part B2020. V. 5. № 1. P. 252–253. doi: 10.1080/23802359.2019.1700198
  15. Cui W. H., Du X. Y., Zhong M. C., Fang W., Suo Z. Q., Wang D., Dong X., Jiang X. D., Hu J. Y. Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China // Horticulture Research. 2022. V. 9: uhab051. doi: 10.1093/hr/uhab051
  16. Debray K., Marie-Magdelaine J., Ruttink T., Clotault J., Foucher F., Malécot V. Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae) // BMC Evol. Biol. 2019. V. 19: 152. doi: 10.1186/s12862-019-1479-z
  17. Edler D., Klein J., Antonelli A., Silvestro D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML // bioRxiv. 2019. doi: 10.1101/800912
  18. Eriksson T., Hibbs M. S., Yoder A. D., Delwiche C. F., Donoghue M. J. The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of plastid DNA. // Int. J. Pl. Sci. 2003. V. 164. № 2. P. 197–211. doi: 10.1086/346163
  19. Fedorova A. V., Schanzer I. A., Kagalo A. A. Local differentiation and hybridization in populations of wild roses in W Ukraine // Wulfenia. 2010. V. 17. P. 99–115.
  20. Fougère-Danezan M., Joly S., Bruneau A., Gao X. F., Zhang L. B. Phylogeny and biogeography of wild roses with specific attention to polyploids // Ann. Bot. (Oxford). 2015. V. 115. P. 275–291. doi: 10.1093/aob/mcu245
  21. Gurushidze M., Fritsch R. M., Blattner F. R. Species-level phylogeny of Allium subgenus Melanocrommyum: Incomplete lineage sorting, hybridization and trnF gene duplication // Taxon. 2010. V. 59. № 3. P. 829–840. doi: 10.2307/25677671
  22. Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucleic Acids Symposium Series. 1999. V. 41. P. 95–98.
  23. Henker H. 25. Rosa. / Gustav Hegi – Illustrierte Flora von Mitteleuropa, 2nd ed. Weber H. E. (Ed.). Berlin: Parey Buchverlag, 2003, B. 4. T. 2C. P. 1–108.
  24. Herklotz V., Kovařík A., Lunerová J., Lippitsch S., Groth M., Ritz C. M. The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.)Ser.] exhibiting non-symmetrical meiosis // Plant J. 2018. V. 94. P. 77–90. doi: 10.1111/tpj.13843
  25. Hudson R. R. Gene genealogies and the coalescent process // Oxford Surv. Evol. Biol. 1990. V. 7. P. 1–44.
  26. Huson D. H. SplitsTree: A program for analyzing and visualizing evolutionary data // Bioinformatics. 1998. V. 14. P. 68–73.
  27. Huson D. H., Bryant D. Application of phylogenetic networks in evolutionary studies // Molec. Biol. Evol. 2006. V. 23. P. 254–267.
  28. International code of botanical nomenclature (Vienna code) / Eds McNeil J., Barrie C. F.R., Burdet H. M. et al. Ruggell, Liechtenstein: Gantner Verlag, 2006. 568 p.
  29. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. / Eds Turland N. J., Wiersema J. H., Barrie F. R., Greuter W., Hawksworth D. L., Herendeen P. S., Knapp S., Kusber W.-H., Li D.-Z., Marhold K., May T. W., McNeill J., Monro, A.M., Prado J., Price, M.J., Smith G. F. // Regnum Veg. 2018. V. 159. Glashütten: Koeltz Botanical Books, 2018. doi: 10.12705/Code.2018
  30. Jacob S. S., Blattner F. R. A plastid genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference // Molec. Biol. Evol. 2006. V. 23. № 8. P. 1602–1612. doi: 10.1093/molbev/msl018
  31. Jeon J.-H., Kim S. C. Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian wild roses (Rosa sect. Synstylae, Rosaceae) // Genes (Basel). 2019. V. 10. № 1: 23. doi: 10.3390/genes10010023
  32. Jian H.-Y., Zhang H., Tang K.-X., Li S.-F., Wang Q.-G., Zhang T., Qiu X.-Q., Yan H.-J. Decaploidy in Rosa praelucens Byhouwer (Rosaceae) endemic to Zhongdian Plateau, Yunnan, China // Caryologia. 2010. V. 63. P. 162–167.
  33. Jian H. Y., Zhang Y. H., Yan H. J., Qiu X. Q., Wang Q. G., Li S. B., Zhang S. D. The complete plastid genome of a key ancestor of modern roses, Rosa chinensis var. spontanea, and a comparison with congeneric species // Molecules. 2018a. V. 23: 389. doi: 10.3390/molecules23020389
  34. Jian H. Y., Zhang S., Zhang T., Qui X. Q., Yan H. J., Li S. B., Wang Q. G., Tang K. X. Characterization of the complete plastid genome of a critically endangered decaploid rose species, Rosa praelucens (Rosaceae) // Conservation Genet. Resources. 2018b. V. 10. P. 851–854. doi: 10.1007/s12686-017-0946-3
  35. Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform // Nucl. Acids Res. 2002. V. 30. P. 3059–3066. doi: 10.1093/nar/gkf436
  36. Katoh K., Standley D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability // Molec. Biol. Evol. V. 2013. V. 30. P. 772–780. doi: 10.1093/molbev/mst010
  37. Kellner A., Benner M., Walther H., Kunzmann L., Wissemann V., Ritz C. M. Leaf architecture of extant species of Rosa L. and the Paleogene species Rosa lignitum Heer (Rosaceae) // International Journal of Plant Sciences. 2012. V. 173. № 3. P. 239–250.
  38. Kinene T., Wainaina J., Maina S., Boykin L. M. Rooting trees, methods for. / Encyclopedia of Evolutionary Biology. Ed. Kliman R. M. Oxford: Academic Press, 2016. V. 3. P. 489–493.
  39. Klášterský I. Rosa L. / Flora Europaea. Eds Tutin T. et al. Cambridge: Cambridge University Press: 1968. V. 2. P. 25–32.
  40. Koopman W. J.M., Wissemann V., De Cock K., Van Huylenbroeck J., De Riek J., Sabatino G. J.H., Visser D., Vosman B., Ritz C. M., Maes B., Werlemark G., Nybom H., Debener T., Linde M., Smulders M. J.M. AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae) // Amer. J. Bot. 2008. V. 95. № 3. P. 353–366. doi: 10.3732/ajb.95.3.353
  41. Ku T. C., Robertson K. R. Rosa Linnaeus / Flora of China. Eds Wu C. Y., Raven P. H. Beijing/St. Louis: Science Press/Missouri Botanical Garden Press, 2003. V. 9. P. 339–381.
  42. Kvaček Z., Walther H. Oligocene flora of Bechlejovice at Děčín from the neovolcanic area of the České středohoří Mountains, Czech Republic // Acta Mus. Nat. Pragae, Ser. B, Hist. Nat. 2004. V. 60. № 1–2. P. 9–60.
  43. Lewis W. H., Ertter B., Bruneau A. Rosa L. // Flora of North America North of Mexico / Eds Editorial Committee. V. 9. Available online: http://www.efloras.org/florataxon.aspx?flora_id =1&taxon_id=128746. (Accessed: 10.11.2022)
  44. Linnaeus C. Species Plantarum. Holmiae: Impensis Laurentii Salvii, 1753. V. 1. P. 491–492.
  45. Liu C., Wang G., Wang H., Xia T., Zhang S., Wang Q., Fang Y. Phylogenetic relationships in the genus Rosa revisited based on rpl16, trnL-F, and atpB-rbcL sequences // Hort. Sci. 2015. V. 50. № 11. P. 1618–1624.
  46. Lunerová J., Herklotz V., Laudien M., Vozárová R., Groth M., Kovařík A., Ritz C. M. Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa // Ann. Bot. (Oxford). 2020. V. 125. № 7. P. 1025–1038. doi: 10.1093/aob/mcaa028
  47. Meng J., Fougère-Danezan M., Zhang L.-B., Li D.-Z., Yi T.-S. Untangling the hybrid origin of the Chinese tea-roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes // Plant Syst. Evol. 2011. V. 297. P. 157–170. doi: 10.1007/s00606-011-0504-5
  48. Meng J., Jiang H., Linna Zhang L., He J. Characterization of the complete plastid genome of an important Chinese Old Rose Rosa odorata var. pseudindica. // Mitochondrial DNA Part B. 2019. V. 4. № 1. P. 679–680. doi: 10.1080/23802359.2019.1572469
  49. Peterson A., Harpke D., Peterson J., Harpke A., Peruzzi L. A pre-Miocene Irano-Turanian cradle: Origin and diversification of the species-rich monocot genus Gagea (Liliaceae). // Ecol. & Evol. 2019. V. 9. № 10. P. 5870–5890. doi: 10.1002/ece3.5170
  50. Plants of the World online (POWO). Available online: http://plantsoftheworldonline.org/ (Accessed 7 August 2022).
  51. Potter D., Gao F., Bortiri P. E., Oh S.-H., Baggett S. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data // Plant Syst. Evol. 2002. V. 231. P. 77–89. doi: 10.1007/s006060200012
  52. Rehder A. Rosa L. / Rehder A. Manual of cultivated trees and shrubs hardy in North America, 2nd ed., New York: Macmillan, 1949. P. 426–451.Ritz C.M., Schmuths H., Wissemann V. Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa // J. Heredity. 2005. V. 96. № 1. P. 4–14.
  53. Schanzer I. A., Fedorova A. V., Galkina M. A., Chubar E. A., Rodionov A. V., Kotseruba V. V. Is Rosa × archipelagica (Rosaceae, Rosoideae) really a spontaneous intersectional hybrid between R. rugosa and R. maximowicziana? Molecular data confirmation and evidence of paternal leakage // Phytotaxa. 2020. V.428. № 2. P. 93–103. doi: 10.11646/phytotaxa.428.2.3
  54. Shaw J., Lickey E. B., Schilling E. E., Small R. L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. // Am. J. Bot. 2007. V. 94. № 3. P. 275–288. doi: 10.3732/ajb.94.3.275
  55. Silvestro D., Michalak I. raxmlGUI: a graphical front-end for RAxML // Organisms Diversity Evol. 2012. V. 12. P. 335–337. doi: 10.1007/s13127-011-0056-0
  56. Simmons M. P., Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses // Syst. Biol. 2000. V. 49. № 2. P. 369–381. doi: 10.1093/sysbio/49.2.369
  57. Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation // Genetics. 1992. V. 132. P. 619–633.
  58. The World Checklist of Vascular Plants (WCVP). Ed. Govaerts R. H.A. Available online: https://wcvp.science.kew.org/ (Accessed 7.08.2022).
  59. Tomljenović N., Pejić I. Taxonomic review of the genus Rosa // Agric. Conspect. Sci. 2018. V. 83. № 2. P. 139–147. https://hrcak.srce.hr/203011
  60. Wang M., Zhang C., Li M., Gao X. The complete plastid genome sequence of Rosa banksiae var. normalis (Rosaceae) // Mitochondrial DNA Part B. 2019. V. 4. № 1. P. 969–970. doi: 10.1080/23802359.2019.1580163
  61. Wang, Q., Hu H., An J., Bai G., Qunli Ren Q., Liu J. Complete plastid genome sequence of Rosa roxburghii and its phylogenetic analysis // Mitochondrial DNA Part B. 2018. V. 3. № 1. P. 149–150. doi: 10.1080/23802359.2018.1431074
  62. Wissemann V. Beauty and the bastards. Intensive hybridization controls the evolution of wild roses // B.I.F. FUTURA. 2006. V. 21. P. 158–163.
  63. Wissemann V. Conventional taxonomy (wild roses). / Encyclopedia of rose science. Eds Roberts A. V., Debener T., Gudin S. Amsterdam: Elsevier, 2003. P. 111–117.
  64. Wissemann V., Ritz C. The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy // Bot. J. Linn. Soc. 2005. V. 147. P. 275–290. doi: 10.1111/j.1095-8339.2005.00368.x
  65. Yin X., Liao B., Guo S., Liang C., Pei J., Xu J., Chen S. The plastids genomic analyses of Rosa laevigata, R. rugosa and R. canina // Chinense Medicine. 2020. V. 15: 18. doi: 10.1186/s13020-020-0298-x
  66. Zhang C., Li S.-Q., Xie H.-H., Liu J.-Q., Gao X.-F. Comparative plastid genome analyses of Rosa: Insights into the phylogeny and gene divergence // Tree Genet. Genomes. 2022. V. 18: 20. doi: 10.1007/s11295-022-01549-8
  67. Zhang C., Xiong X., Gao X. The complete plastid genome sequence of Rosa laevigata (Rosaceae) // Mitochondrial DNA Part B. 2019. V. 4. № 2. P.: 3556–3557. doi: 10.1080/23802359.2019.1674200
  68. Zhang J., Esselink G. D., Che D., Fougère-Danezan M., Arens P., Smulders M. J.M. The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat // J. Hort. Sci. Biotechnol. 2013. V. 88. № 1. P. 85–92. doi: 10.1080/14620316.2013.11512940
  69. Zhang S. D., Jin J. J., Chen S. Y., Chase M. W., Soltis D. E., Li H. T., Yang J. B., Li D. Z., Yi T. S. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. // New Phytol. 2017. V. 214. № 3. P. 1355–1367. doi: 10.1111/nph.14461
  70. Zhang S. D., Zhang C., Ling L. Z. The complete plastid genome of Rosa berberifolia // Mitochondrial DNA Part B. 2019. V. 4. № 1. P. 1741–1742. doi: 10.1080/23802359.2019.1610093
  71. Zhao L., Zhang H., Wang Q.-G., Ma C. L., Jian H.-Y. The complete plastid genome of Rosa lucidissima, a critically endangered wild rose endemic to China // Mitochondrial DNA Part B. 2019. V. 4(1). P. 1826–1827. doi: 10.1080/23802359.2019.1613198
  72. Zhao X., Gao C. The complete plastid genome of Rosa minutifolia // Mitochondrial DNA Part B. 2020. V. 5(3). P. 3320–3321. doi: 10.1080/23802359.2020.1817807
  73. Zhu Z. M., Gao X. F., Fougère-Danezan M. Phylogeny of Rosa sections Chinenses and Synstylae (Rosaceae) based on plastid and nuclear markers // Molec. Phylogen. Evol. 2015. V. 87. P. 50–64. doi: 10.1016/j.ympev.2015.03.014

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Сеть гаплотипов ndhC-trnV рода Rosa, построенная методом статистической парсимонии. Гаплогруппы обозначены римскими цифрами и оконтурены. Размер кружков коррелирует с числом последовательностей, объединенных в один гаплотип. Черные точки обозначают отсутствующие промежуточные гаплотипы, не обнаруженные среди проанализированных образцов. Разрешенные замкнутые петли обозначены точечным пунктиром. Цвета гаплотипов и обозначения в легенде (в верхнем левом углу) соответствуют таксономическим секциям рода Rosa. Соответствие номеров гаплотипов видам и секциям приведено ниже (подробнее см. табл. 2 в Приложении):

Скачать (250KB)
3. Рис. 2. Географическое распространение основных гаплогрупп в роде Rosa. Цвета соответствуют номерам гаплогрупп на рис. 1 и показаны на легенде в верхнем правом углу.

Скачать (262KB)
4. Рис. 3. Сплитграф NeighborNet гаплотипов ndhC-trnV рода Rosa. Номера гаплотипов приведены в табл. 2 Приложения. Римские цифры обозначают гаплогруппы, как на рис. 1. Гаплогруппа I выделена закрашенным эллипсом, как корневая. Гаплотип 51 (R. omeiensis) выделен полужирным шрифтом, как занимающий иное положение в сети гаплотипов TCS.

Скачать (183KB)
5. Рис. 4. Филогенетическое дерево рода Rosa, построенное методом максимального правдоподобия по данным полных последовательностей пластидных геномов. Цвета и римские цифры справа обозначают группы гаплотипов и соответствуют гаплогруппам ndhC-trnV на рис. 1. Бутстреп поддержки выше 50% показаны над ветвями. Ветви, выделенные жирным, указывают на бутстреп поддержки 100%. Цифра 51 справа от первой дивергирующей клады соответствует номеру гаплотипа R. omeiensis в сети гаплотипов на рис. 1, 3. Жирным шрифтом выделены названия неверно таксономически идентифицированных образцов.

Скачать (300KB)

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах