Physiological Responses of Cucumber Plants to Sodium Lignosulfonate Application to Sandy Loam Soil

Capa

Citar

Texto integral

Resumo

The use of lignosulfonates (LS) to improve soil fertility is currently under study and discussion. The effect of sodium LS application in the sandy loam soil on the accumulation of biomass, photosynthesis, respiration and their coupling in cucumber plants was studied. The LS rate of 10–25 g/kg did not have a significant effect on the studied parameters of the physiological state of plants. However, at a high LS content (50–100 g/kg), the plant growth rate and activity of the photosynthetic apparatus decreased, and the respiration rate increased, which caused the increase in the ratio of respiration to photosynthesis. The negative effect of high concentrations of LS on the physiological state of cucumber plants and their cold resistance is presumably associated with sodium salinization of the soil.

Sobre autores

E. Ikkonen

Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences

Autor responsável pela correspondência
Email: likkonen@gmail.com
Russia, 185910, Petrozavodsk, Puskinskaja, 11

M. Yrkevich

Institute of Biology of the Karelian Research Centre, Russian Academy of Sciences

Email: likkonen@gmail.com
Russia, 185910, Petrozavodsk, Puskinskaja, 11

Bibliografia

  1. Гармаш Е.В. Митохондриальное дыхание фотосинтезирующей клетки // Физиология растений. 2016. Т. 63. № 1. С. 17–30. https://doi.org/10.7868/S001533031506007X
  2. Икконен Е.Н., Грабельных О.И., Шерудило Е.Г., Шибаева Т.Г. Устойчивое и чувствительное к салицилгидроксамовой кислоте дыхание теплолюбивых растений в условиях кратковременных ежесуточных понижений температуры // Физиология растений. 2020а. Т. 67. № 1. С. 67–74. https://doi.org/10.31857/S0015330319050063
  3. Икконен Е.Н., Шибаева Т.Г., Шерудило Е.Г., Титов А.Ф. Реакция дыхания проростков озимой пшеницы на продолжительное и кратковременное ежесуточное понижение температуры // Физиология растений. 2020б. Т. 67. № 3. С. 312–318. https://doi.org/10.31857/S0015330320020062
  4. Максимов В.Ф., Стадницкий Г.В. Введение в специальность: учебное пособие для Вузов. Л.: Химия, 1988. С. 168.
  5. Панкова Е.И., Конюшкова М.В., Горохова И.Н. О проблеме оценки засоленности почв и методике крупномасштабного цифрового картографирования засоленных почв // Экосистемы: экология и динамика. 2017. Т. 1. № 1. С. 26–54.
  6. Рахманкулова З.Ф., Федяев В.В., Абдуллина О.А., Усманов И.Ю. Формирование адаптационных механизмов у пшеницы и кукурузы к повышенному содержанию цинка // Вестник башкирского университета. 2008. Т. 13. № 1. С. 43–46.
  7. Семихатова О.А. Оценка адаптационной способности растения на основании исследований темнового дыхания // Физиология растений. 1998. Т. 45. № 1. С. 142–148.
  8. Хабаров Ю.Б., Вешняков В.А., Кузяков Н.Ю. Получение и применение комплексов лигносульфоновых кислот с катионами железа // Лесной журнал. 2019. № 5. С. 167–187. https://doi.org/10.37482/0536-1036-2019-5-167
  9. Atkin O.K., Bruhn D., Hurry V.M., Tjoelker M.G. The hot and the cold: unraveling the variable response of plant respiration to temperature // Funct. Plant Biol. 2005. V. 32. P. 87–105. https://doi.org/10.1071/FP03176
  10. Ayub G., Zaragoza-Castells J., Griffin K.L., Atkin O.K. Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO2 concentrations // Plant Sci. 2014. V. 226. P. 120–130. https://doi.org/10.1016/j.plantsci.2014.05.001
  11. Carrasco J., Kovács K., Czech V., Fodor F., Lucena J., Vértes A., Hernández-Apaolaza L. Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties // J. Agr. Food Chem. 2012. V. 60. P. 3331–3340. https://doi.org/10.1021/jf204913s
  12. Docquier S., Lambé P., Kevers C., Gaspar T. Beneficial use of lignosulfonates in in vitro plant cultures: Stimulation of growth, of multiplication and of rooting // Plant Cell Tiss. Org. 2007. V. 90. P. 285–291. https://doi.org/10.1007/s11240-007-9267-7
  13. Ertani A., Francioso O., Tugnoli V., Righi V., Nardi S. Effect of Commercial Lignosulfonate-Humate on Zea mays L. Metabolism // J. Agr. Food Chem. 2011. V. 59. P. 11940–11948. https://doi.org/10.1021/jf202473e
  14. Farquhar G.D., von Caemmerer S. Modelling of photosynthetic response to environmental conditions. In: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (eds). Encyclopedia of plant physiology. V. 12B. Physiological plant ecology II. Water relations and carbon assimilation. Springer Verlag. Berlin. 1982. P. 551–587. https://doi.org/10.1007/978-3-642-68150-9_17
  15. Fernando V., Roberts G.R. The partial inhibition of soil urease by naturally occurring polyphenols // Plant Soil. 1976. V. 44. P. 81–86. https://doi.org/10.1007/BF00016957
  16. Hurry V., Igamberdiev A.U., Keerberg O., Pärnik T.R., Atkin O.K., Zaragoza-Castells J., Gardestrom P. Respiration in photosynthetic cells: gas exchange components, interactions with photorespiration and the operation of mitochondria in the light // Advances in Photosynthesis and Respiration, H. Lambers, M. Ribas-Carbo (Eds.). Kluwer Academic Publishers, Dordrecht. 2005. P. 43–61. https://doi.org/10.1007/1-4020-3589-6_4
  17. Kok B. A critical consideration of the quantum yield of Chlorella-photosynthesis // Enzymologia. 1948. V. 13. P. 1–56.
  18. Lambers H. Cyanide-resistant respiration: a non-phosphorylating electron transport pathway acting as an energy overflow // Physiol. Plant. 1982. V. 55. P. 478–485. https://doi.org/10.1111/j.1399-3054.1982.tb04530.x
  19. Liu Q., Deng Y., Tang J., Chen D., Li X., Lin Q., Yin G., Zhang M., Hu H. Potassium lignosulfonate as a washing agent for remediating lead and copper co-contaminated soils // Sci. Total Environ. 2019. V. 658. P. 836–842. https://doi.org/10.1016/j.scitotenv.2018.12.228
  20. Stapanian M.A., Shea D.W. Lignosulfonates: effects on plant growth and survival and migration through the soil profile // Int. J. Environ. Studies. 1986. V. 27. P. 45–56. https://doi.org/10.1080/00207238608710276
  21. Ta’negonbadi B., Noorzad R. Stabilization of clayey soil using lignosulfonate // Transp. Geotech. 2017. V. 12. P. 45–55. https://doi.org/10.1016/j.trgeo.2017.08.004
  22. Yamori W., Evans J.R., von Caemmerer S. Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves // Plant Cell Environ. 2010. V. 33. P. 332–343. https://doi.org/10.1111/j.1365-3040.2009.02067.x
  23. Yamori W., Noguchi K., Hikosaka K., Terashima I. Cold tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species // Plant Cell Physiol. 2009. V. 50. P. 203–215. https://doi.org/10.1093/pcp/pcn189

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (690KB)
3.

Baixar (81KB)
4.

Baixar (43KB)

Declaração de direitos autorais © Е.Н. Икконен, М.Г. Юркевич, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies