Basic Limitations of Self-Organisation on Examples of High- and Low-Integrated Very Complex Systems (Mammalian Skeleton Elements and Mammalian Fossil Assemblages): from Empirical Evidences to the Theory

Capa

Citar

Texto integral

Resumo

A high variety is a characteristic attribute of any material phenomena and processes involving living matter, i.e., very complex systems (VCC). We verified the presence of fundamental constraints on size/shape diversity and self-organization on the example of a mammalian skeleton in four orders (41 species.) The properties of more than 4700 multidimensional descriptive models of VCC were studied. A self-organization index R (0 ≤ R ≤ 1) was calculated for each model, its range of variability was mainly limited to the interval from ~0.10 to ~0.30. The concepts of an abstract Ashby’ regulator and the Shannon-Hartley theorem were used to explain the variation in the empirical data. It was concluded that there are significant constraints on a quality of morphological diversity regulation and the possible level of self-organization of VCCs for steady states.

Sobre autores

A. Puzachenko

Institute of Geography Russian Academy of Science

Autor responsável pela correspondência
Email: puzak@igras.ru
Russia, 119017, Moscow, Staromonetniy per., 29

Bibliografia

  1. Васильев К.К., Глушков В.А., Дормидонтов А.В., Нестеренко А.Г. Теория электрической связи: учебное пособие. Ульяновск: УлГТУ, 2008. 452 с.
  2. Вернадский В.И. Живое вещество. М.: Наука, 1978. 358 с.
  3. Гершунин С.А., Алов, А.А. Революция в физике начала XX в.: единство философских идей и научных теорий // Экономические и социально-гуманитарные исследования. 2019. № 3(23). С. 82–90.
  4. Куприянова И.Ф., Пузаченко А.Ю., Агаджанян А.К. Временные и пространственные компоненты изменчивости черепа обыкновенной бурозубки, Sorex araneus (Insectivora) // Зоол. журн. 2003. Т. 82. № 7. С. 839–851.
  5. Майнцер К. Сложносистемное мышление: Материя, разум, человечество. Новый синтез. Москва: Книжный дом “ЛИБРОКОМ”, 2009. 464 с.
  6. Пузаченко А.Ю. Внутрипопуляционная изменчивость черепа обыкновенного слепыша Spalax microphthalmus (Spalacidae, Rodentia). 1. Методика анализа данных, не возрастная изменчивость самцов // Зоол. журн. 2001. Т. 80. № 3. С. 1–15.
  7. Пузаченко А.Ю. Закон Шеннона–Хартли и предел внутренней упорядоченности биологических систем // Принципы экологии. 2020. Т. 3. С. 28–44.
  8. Пузаченко А.Ю. Инварианты и динамика морфологического разнообразия (на примере черепа млекопитающих). Дис. … д-ра. биол. наук. М., 2013. 417 с.
  9. Пузаченко А.Ю. Информационные переменные морфометрического разнообразия млекопитающих. Териофауна Россия и сопредельных территории: Материалы Междунар. совещ. (IX Съезд Териологического общества при РАН). М.: Товарищество научных изданий КМК. 2011. С. 384.
  10. Пузаченко А.Ю. Количественные закономерности морфологического разнообразия черепа млекопитающих. Сборник трудов Зоологического музея МГУ. 2016. Т. 54 / Павлинов, И.Я, Калякин, М.В., Сысоев, А.В., ред. М.: Товарищество науч. изд. КМК. С. 229–268.
  11. Пузаченко А.Ю. Применение многомерного шкалирования в анализе структуры морфологической изменчивости. Систематика и филогения грызунов и зайцеобразных / Агаджаняна А.К., Орлова В.Н. ред. М.: РАСХН. 2000. С. 137–140.
  12. Пузаченко А.Ю. Энтропия как мера морфологического разнообразия. Териологические исследования. Вып III / Голенищев Ф.Н., Баранова Г.И. СПб. 2003. С. 60–81.
  13. Пузаченко Ю.Г. Биологическое разнообразие в биосфере: системологический и семантический анализ // Биосфера. 2009. Т. 1. № 1. С. 25–38.
  14. Пузаченко Ю.Г. Биологическое разнообразие, устойчивость и функционирование. Проблемы устойчивости биологических систем. М.: ИЭМЭЖ АН СССР. 1982. С. 5–32.
  15. Пузаченко Ю.Г. Семантические аспекты информатики. Экоинформатика. Теория. Практика. Методы и системы / Соколов, В.Е. ред. Санкт-Петербург: Гидрометеоиздат. 1992. С. 7–84.
  16. Урсул А.Д. Темная материя и универсальная эволюция. Универсальная и глобальная история. Эволюция вселенной, земли, жизни и общества. Волгоград: “Учитель”, 2012. С. 208–231.
  17. Яблоков А.В. Изменчивость млекопитающих. М.: Наука, 1966. 364 с.
  18. Abramov A.V. Puzachenko A.Y. Species Co-Existence and Morphological Divergence in West Siberian Mustelids (Carnivora, Mustelidae) // Mam. Study. 2012. V. 37. № 3. P. 255–259.
  19. Abramov A.V., Puzachenko A.Y. Species co-existence and morphological divergence in West Siberian mustelids (Carnivora, Mustelidae) // Mam. Stud. 2012. V. 37. P. 255–259.
  20. Abramov A.V., Puzachenko A.Y., Wiig, Ø. Cranial variation in the European badger Meles meles (Carnivora, Mustelidae) in Scandinavia // Zool. J. the Linn. Soc. 200. V. 157. P. 433–450.
  21. Ashby W.R. An introduction to cybernetics. London: Chapman & Hall. 1956. 306 p.
  22. Ashby W.R. Principles of the self-organizing dynamic system // J. Gen. Psych. 1947. V. 37. P. 125–128.
  23. Ashby W.R. Principles of the self-organizing system. Principles of Self-organization:Transactions of the University of Illinois Symposium / Foerster H. von G., Zopf W., Jr. eds. UK. London: Pergamon Press. 1962. P. 255–278.
  24. Ashby W.R. Requisite variety and its implications for the control of complex systems // Cybernetica. 1958. V. 1. № 2. P. 83–99.
  25. Atlan H. Sources of Information in Biological Systems // IFAC Proc. Vol. 1977. V. 10. № 12. P. 177–184.
  26. Aulin A.Y. The law of requisite hierarchy // Kybernetes. 1979. V. 8. P. 259–266.
  27. Baryshnikov G.F., Puzachenko A.Y. Morphometry of lower cheek teeth of cave bears (Carnivora, Ursidae) with the general remarks on the cheek teeth variability. Boreas. 2020. V. 49, 562–593.
  28. Beer S. Cybernetics and Management, London: English Universities Press. 1959. 214 p.
  29. Bertalanffy L. von. General System Theory – A Critical Review // General Systems. 1962. V. VII. P. 1–20.
  30. Bohórquez Arévalo L.E., Espinosa, A. Theoretical approaches to managing complexity in organisations: a comparative analysis // Estud. Gerenciales, 2015. V. 31. P. 20–29.
  31. Brillouin L. Science and Information Theory. N.Y.: Academic Press Inc., 1962. Second ed. 320 p.
  32. Cilliers P. Complexity and Postmodernism. Understanding Complex Systems. London: Routledge. 1998. 154 p.
  33. Collier J. Information in Biological Systems. Handbook of Philosophy of Science, V. 8. Philosophy of Information / Adriaans P., Benthem J. van eds. Amsterdam: Elsevier. 2008. P. 763–787.
  34. Conant R.C., Ashby R.W. Every good regulator of a system must be a model of that system // Int. J. Sys. Sci. 1970. V. 1. № 2. P. 89–97.
  35. Davison M.L., Jones L.E. Special issue: multidimensional scaling and its applications // Appl. Psych. Meas. 1983. V. 7. P. 373–514.
  36. Di Marzo Serugendo G., Foukia N., Hassas S., Karageorgos A., Most’efaoui S.K., Rana O.F., Ulieru M., Valckenaers P., Aart C. van Self-organisation: Paradigms and applications. Lecture Notes in Artificial Intelligence / Di Marzo Serugendo G., Karageorgos A., Rana O.F., Zambonelli F. eds. Eng. Self-Org. Syst., ESOA. 2003, LNICS. V. 2977, 2004, Berlin, Heidelberg: Springer. P. 1–19.
  37. Doughty A.M., Kaplan M.R., Peltier C., Barker S. A maximum in global glacier extent during MIS 4 // Quat. Sci. Rev. 2021. V. 261. P. 106948.
  38. Foerster H. von. On Self-Organizing Systems and Their Environments // Self-Org. Sys. 1960. V. 50. P. 31–50.
  39. Foote M. Nearest-Neighbor Analysis of Trilobite Morphospace // Syst. Zool. 1990. V. 39. № 4. P. 371–382.
  40. Foote M. The evolution of morphological diversity // Annu. Rev. Ecol. Syst. 1997. V. 28. P. 129–152.
  41. Gershenson C., Polani D., Martius G. Editorial: complexity and self-organization // Front. Robot. 2021. V. AI 8: 668305.
  42. Green D.G., Sadedin S., Leishman T.G. Self-organization. Encyclopedia of Ecology 1. Elsevier B.V. 2008. P. 628–636.
  43. Haken H. Information and Self-Organization. A Macroscopic Approach to Complex Systems. Springer Series in Synergetics. Berlin, Heidelberg: Springer-Verlag. 2006. 258 p.
  44. Hawking S. The Theory of Everything: The Origin and Fate of the Universe. California, Beverly Hills: New Millennium Press, 2002. 176 p.
  45. Heylighen, F. The growth of structural and functional complexity during evolution. The evolution of complexity / Heylighen F., Bollen J., and Riegler A. eds., Dordrecht: Kluwer Academic/Plenum Publishers. 1999. P. 17–44.
  46. Holden, L.M. Complex adaptive systems: concept analysis // J. Adv. Nurs. 2005. V. 52. P. 651–657.
  47. Kendall M.G. Rank Correlation Methods. 4th ed. London: Charles Griffin and Co. 1975. 202 p.
  48. Kruskal B. Multidimensional scaling by optimizing goodness of fit to nonmetric hypothesis // Psychometrika. 1964. V. 29. P. 1–27.
  49. Ladyman J., Lambert J., Wiesner K. What is a complex system? // Eur. J. Philos., 2013. V. 3. P. 33–67.
  50. Ma’ayan A., Complex systems biology // J. R. Soc. Interface. 2017. V. 14. P. 20170391.
  51. McCowan B., Hanser S.F., Doyle L.R. Using information theory to assess the diversity, complexity, and development of communicative repertoires // J. Comp. Psychol. 2002. V. 116. № 2. P. 166–172.
  52. McGhee G.R. Jr. The Geometry of Evolution Adaptive Landscapes and Theoretical Morphospaces. U.K.: Cambridge University Press. 2007. 200 p.
  53. McGhee G.R. Jr. Theoretical morphology: The concept and its applications. Analytical Paleobiology / Glinsky N.L., Signor P.W. eds. 1991. P. 87–102.
  54. Nicolis J.S. Dynamics of Hierarchical Systems. An Evolutionary Approach. Springer Series in Synergetics. 1986. V. 25. Berlin, Heidelberg, N.Y., Tokyo: Springer-Verlag. 412 p.
  55. Pavlinov I.Ya. Morphological Disparity: An Attempt to Widen and to Formalize the Concept / Research in Biodiversity – Models and Applications, Pavlinov I.Ya. ed., London: IntechOpen. 2011. P. 341–364.
  56. Puzachenko A. Diversity of regional complexes of mammals in Europe at the boundary between Pleistocene and Holocene // Principy èkologii. 2019. № 3. P. 74‒100.
  57. Puzachenko A.Y., Abramov A.V., Rozhnov V.V. Cranial variation and taxonomic content of the marbled polecat Vormela peregusna (Mustelidae, Carnivora) // Mam. Biol. 2017. V. 83. P. 10–20.
  58. Puzachenko A.Y., Korablev N.P. Morphological diversity in the postnatal skull development in representatives of two families of rodents (Spalacidae, Castoridae, Rodentia) // Rus. J. Dev. Biol. 2014. V. 45. № 3. P. 149–162.
  59. Puzachenko A.Y., Markova A.K. Evolution of Mammalian Diversity in the Late Pleistocene–Middle Holocene of the Mountainous Regions of Northern Eurasia: Between Two Interglacials // Biol. Bull. 2020. V. 47. № 2. P. 153–171.
  60. Puzachenko A.Y., Markova A.K. Using multidimensional analysis and information functions for macro description of European natural complexes in the second part of the Late Pleistocene and the Holocene // Dokl. Earth Sc. 2011. V. 437. № 1. P. 380–382.
  61. Puzachenko J.G. Information and information flows in the biosphere. Encyclopedia of Ecology / Jørgensen S.E., Fath B.D. eds. B.V. P. Oxford: Elsevier. 2008. P. 108–110.
  62. Raup D.M. Geometric analysis of shell coiling: General problems // J. Paleontol. V. 40. P. 1178–1190.
  63. Romer A.S, Parsons T.S. The vertebrate body. 6th ed. Philadelphia: Saunders College Pub. 1986. 679 p.
  64. Schneider T.D. 70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence // Nucl. Acid. Res. 2010. V. 38. № 18. P. 5995–6006.
  65. Schneider T.D. Evolution of biological information // Nucleic Acids Res. 2000. V. 28. № 14. P. 2794–2799.
  66. Schneider T.D. Theory of molecular machines. I. Channel capacity of molecular machines // J. Theor. Biol. 1991. V. 148. P. 83–123.
  67. Schrödinger E. What is Life? The Physical Aspect of the Living Cell. N.Y.: Cambridge University Press. 2012. 90 p.
  68. Shannon C.E. A Mathematical Theory of Communication // Bell Syst. Tech. J. 1948. V. 27. P. 379–423, 623–656.
  69. Shannon C.E. Communication in the Presence of Noise // Proc. IRE. 1949. V. 37. № 1. P. 10–21.
  70. Shannon C.E., Weaver W. The mathematical theory of communication. IL, Urbana and Chicago: University of Illinois Press. 1949. 35 p.
  71. Shepard B.N. The analysis of proximities: multidimensional scaling with unknown distance function // Psychometrika. 1962. V. 27. № 2. P. 125–140.
  72. Simpson G.G. Tempo and mode in evolution. N.Y.: Columbia University Press. 1944. 237 p.
  73. Tanner J.M. Regulation of growth in size in mammals // Nature. 1963. V. 899. P. 845–850.
  74. Tkačik G., Bialek W. Information Processing in Living Systems // An. Rev. Cond. Mat. Phys. 2016. V. 7. № 1. P. 89–117.
  75. Wiener N. Cybernetics: or Control and Communication in the Animal and the Machine. Cambridge, Mass.: The M.I.T. Press. 1961. Second ed. 212 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (212KB)
3.

Baixar (600KB)
4.

Baixar (209KB)
5.

Baixar (128KB)
6.

Baixar (127KB)
7.

Baixar (374KB)
8.

Baixar (215KB)

Declaração de direitos autorais © А.Ю. Пузаченко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies