The initial of Autonomic Tone Determines the Development of Irreversible Myocardial Ischemia in Rats

Capa

Citar

Texto integral

Resumo

The method of HRV analysis in rats was used to evaluate the relationship between the initial level of total HRV and regulatory changes in the work of the heart before and on days 1, 3, and 28 after the modeling of irreversible ischemia (II). According to the level of total HRV, rats were divided into two groups: with initially “low” and “high” levels of HRV, the LV (SDRR = 5.0 ms) and HV (SDRR = 8.2 ms) groups. LV and HV rats reacted differently to the cold test before and after II. Three days after II, LV rats had a better preservation of the autonomic regulation of the heart, and 28 days later, a smaller size of myocardial damage and mortality. In HV rats, the number of mast cells in the ischemic focus was higher, and in the zone unaffected by ischemia, the proportion of degranulated cells was higher than in LV rats.

Sobre autores

M. Morozova

Faculty of Fundamental Medicine, Lomonosov Moscow University

Email: mormasha@gmail.com
119991 Russia, Moscow

A. Kurenkova

Institute of Regenerative Medicine, Sechenov Moscow Medical University

Email: mormasha@gmail.com
119991 Russia, Moscow

Ju. Volkova

University of Zurich, Institute of Physiology

Email: mormasha@gmail.com
Switzerland, 8057, Zürich, Winterthurerstrasse 190

A. Berdalin

Federal State Budgetary Institution “Federal center of brain research and neurotechnologies” of the Federal Medical Biological Agency

Email: mormasha@gmail.com
117513 Russia, Moscow

E. Banzeluk

Faculty of Fundamental Medicine, Lomonosov Moscow University

Email: mormasha@gmail.com
119991 Russia, Moscow

B. Umarova

Faculty of Biology, Lomonosov Moscow University

Email: mormasha@gmail.com
119234 Russia, Moscow

E. Lukoshkova

Federal State Budgetary Institution National medical research center of cardiology Ministry of Health of the Russian Federation

Email: mormasha@gmail.com
121552 Russia, Moscow

S. Gavrilova

Faculty of Fundamental Medicine, Lomonosov Moscow University

Email: mormasha@gmail.com
119991 Russia, Moscow

Bibliografia

  1. Баевский Р.М., Иванов Г.Г., Чирейкин Л.В., Гаврилушкин А.П., Довгалевский П.Я., Кукушкин Ю.А., Мироов Т.Ф., Прилуцкий Д.А., Семенов Ю.Н., Фёдоров В.Ф., Флейшман А.Н., Медведев М.М. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем // Вест. аритмологии. 2001. Т. 24. С. 65–87.
  2. Гаврилова С.А., Марков М.А., Бердалин А.Б., Куренкова А.Д., Кошелев В.Б. Изменение симпатической иннервации сердца крысы при экспериментальном инфаркте миокарда; влияние пептида Семакс // Бюллетень экспериментальной биологии и медицины. 2017. Т. 163. №. 5. С. 570–574.
  3. Ефремова Р.И., Спицин А.П. Особенности устойчивости симпатотонического типа вегетативной регуляции у юных лыжников под действием тренировочных и соревновательных нагрузок // Журн. медико-биологических исследований. 2017. Т. 5. № 4. С. 90–92.
  4. Максимов А.Л., Лоскутова А.Н., Аверьянова И.В. Информативность показателей вариабельности кардиоритма при оценке адаптированности юношей призывного возраста к условиям Северо-Востока России // Журн. медико-биологических исследований. 2015. № 4. С. 66–79.
  5. Морозова М.П., Евсеев А.М., Прохорова А.В., Миронова О.Г., Банзелюк Е.Н., Гаврилова С.А. Связь вегетативного тонуса девушек и юношей с их психологическим профилем личности // Физиология человека. 2020. Т. 46. № 5. С. 15–26.
  6. Сокрут В.Н., Сокрут О.П., Синяченко О.В. “Вегетативный паспорт” и реабилитационный диагноз в артрологической практике // Боль. Суставы. Позвоночник. 2016. № 1(21). С.45–51.
  7. Шлык Н.И., Зуфарова Э.И. Нормативы показателей вариабельности сердечного ритма у исследуемых 16–21 года с разными преобладающими типами вегетативной регуляции // Вестник Удмуртского университета. Сер. “Биология. Науки о Земле”. 2013. № 4. С. 96–105.
  8. Aires R., Pimentel E.B., Forechi L., Dantas E.M., Mill J.G. Time course of changes in heart rate and blood pressure variability in rats with myocardial infarction // Braz J Med Biol Res. 2017. V. 50. № 1. P. e5511.
  9. Aubert A.E., Seps B., Beckers F. Heart rate variability in athletes // Sports Med. 2003. V. 33. № 12. P. 889–919.
  10. Baevsky R.M., Baranov V.M., Funtova I.I., Diedrich A., Pashenko A.V., Chernikova A.G., Drescher J., Jordan J., Tank J. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station // J. Appl. Physiol. 2007. V. 103. № 1. P. 156–161.
  11. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. // Nature. 2000. V. 405. № 6785. P. 458–462.
  12. Carpeggiani C., Landi P., Michelassi C., Raciti M., Macerata A., Emdin M. Early assessment of heart rate variability is predictive of in-hospital death and major complications after acute myocardial infarction // Int J Cardiol. 2004. V. 96. № 3. P. 361–368.
  13. Ciarka A., van de Borne P., Pathak A. Myocardial infarction, heart failure and sympathetic nervous system activity: new pharmacological approaches that affect neurohumoral activation // Expert Opin Investig Drugs. 2008. V. 17. № 9. P. 1315–1330.
  14. Giuliano R.J., Karns C.M., Bell T.A., Petersen S., Skowron E.A., Neville H.J., Pakulak E. Parasympathetic and sympathetic activity are associated with individual differences in neural indices of selective attention in adults // Psychophysiology. 2018. V. 55. P. e13079.
  15. Goldberger J.J., Arora R., Buckley U., Shivkumar K. Autonomic Nervous System Dysfunction: JACC Focus Seminar // J. Am. Coll Cardiol. 2019. V. 73. N. 10. P. 1189–1206.
  16. Golosheykin S., Grant J.D., Novak O.V., Heath A.C., Anokhin A.P. Genetic influences on heart rate variability // Int. J. Psychophysiol. 2017. V. 115. P. 65–73.
  17. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology // Eur. Heart J. 1996. V. 17. № 3. P. 354–381.
  18. Huikuri H.V., Stein P.K. Clinical application of heart rate variability after acute myocardial infarction // Front Physiol. 2012. V. 3. P. 41.
  19. Imamura M., Smith N.C., Garbarg M., Levi R. Histamine H3-receptor-mediated inhibition of calcitonin gene-related peptide release from cardiac C fibers. A regulatory negative-feedback loop // Circ Res. 1996. V. 78. № 5. P. 863–869.
  20. Jardine D.L., Charles C.J., Ashton R.K., Bennett S.I., Whitehead M., Frampton C.M., Nicholls M.G. Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model // J. Physiol. 2005. V. 565. Pt. 1. P. 325–333.
  21. Kleiger R.E., Miller J.P., Bigger J.T., Moss A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction // Am. J. Cardiol. 1987. V. 59. № 4. P. 256–262.
  22. Kolettis T.M., Kontonika M., Lekkas P., Vlahos A.P., Baltogiannis G.G., Gatzoulis K.A., Chrousos G.P. Autonomic responses during acute myocardial infarction in the rat model: implications for arrhythmogenesis // J. Basic and Clinical Physiology and Pharmacology. 2018. V. 29. № 4. P. 339–345.
  23. Kotenko M.A., Smelisheva L.N., Kuznetsov A.P., Kiseleva M.M. Stress-induced indicators of hydrolytic function of the stomach and the pancreas in persons with various type of autonomic nervous system // Vopr Pitan. 2014. V. 83. № 6. P. 18–24.
  24. Lampert R., Ickovics J.R., Viscoli C.J., Horwitz R.I., Lee F.A. Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the beta-blocker heart attack trial // The American J. Cardiology. 2003. V. 91. № 2. P. 137–142.
  25. Lima-Borges D.S., Martinez P.F., Vanderlei L.C.M., Barbosa F.S.S., Oliveira-Junior S.A. Autonomic modulations of heart rate variability are associated with sports injury incidence in sprint swimmers // Phys Sportsmed. 2018. V. 46. № 3. P. 374–384.
  26. Lokhandwala M.F. Inhibition of sympathetic nervous system by histamine:studies with H1- and H2-receptor antagonists // J. Pharmacol. Exp. Ther. 1978. V. 206. № 1. P. 115–122.
  27. Luecken L.J., Appelhans B.M. Early parental loss and salivary cortisol in young adulthood: the moderating role of family environment // Dev. Psychopathol. 2006. V. 18. № 1. P. 295–308.
  28. Malinowska B., Godlewski G., Schlicker E. Histamine H3 receptors–general characterization and their function in the cardiovascular system // J. Physiol Pharmacol. 1998. V. 49. № 2. P. 191–211.
  29. Nishi K., Sakanashi M., Takenaka F. Activation of afferent cardiac sympathetic nerve fibers of the cat by pain producing substances and by noxious heat // Pflugers Arch. 1977. V. 372. № 1. P. 53–61.
  30. Puebla-Osorio N., Sarchio S.N.E., Ullrich S.E., Byrne S.N. Detection of Infiltrating Mast Cells Using a Modified Toluidine Blue Staining // Methods Mol Biol. 2017. V. 1627. P. 213–222.
  31. Radosa J., Dyck W., Goerdt S., Kurzen H. The cholinergic system in guttate psoriasis with special reference to mast cells // Exp. Dermatol. 2011. V. 20. № 8. P. 677–679.
  32. Qin M., Zeng C., Liu X. The cardiac autonomic nervous system: A target for modulation of atrial fibrillation // Clin Cardiol. 2019. V. 42. № 6. P. 644–652.
  33. Schwartz P.J., La Rovere M.T., Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification // Circulation. 1992. V. 85. 1 suppl. P. I77–191.
  34. Selye H., Bajusz E., Grasso S., Mendell P. Simple techniques for the surgical occlusion of coronary vessels in the rat // Angiology. 1960. V. 11. P. 398–407.
  35. Shi L., Xu H., Wu Y., Li X., Zou L., Gao J., Chen H. Alpha7-nicotinic acetylcholine receptors involve the imidacloprid-induced inhibition of IgE-mediated rat and human mast cell activation // RSC Adv. 2017. V. 7. P. 51896–51906.
  36. Spangler D.P., Gamble K.R., McGinley J.J., Thayer J.F., Brooks J.R. Intra-individual variability in vagal control is associated with response inhibition under stress // Front Hum Neurosci. 2018. V. 12. P. 475.
  37. Tegegne B.S., Man T., van Roon A.M., Riese H., Snieder H. Determinants of heart rate variability in the general population: the lifelines cohort study // Heart Rhythm. 2018. V. 15. № 10. P. 1552–1558.
  38. Thome U., Berger F., Borchard U., Hafner D. Electrophysiological characterization of histamine receptor subtypes in sheep cardiac Purkinje fibers // Agents Actions. 1992. V. 37. № 1–2. P. 30–38.
  39. Tracey K.J. The inflammatory reflex // Nature. 2002. T. 420. № 6917. P. 853–859.
  40. Triposkiadis F., Karayannis G., Giamouzis G., Skoularigis J., Louridas G., Butler J. The sympathetic nervous system in heart failure: physiology, pathophysiology, and clinical implications // J. Am. Coll. Cardiol. 2009. V. 54. № 19. P. 1747–1762.
  41. Wolff A.A., Levi R. Histamine and cardiac arrhythmias // Circ. Res. 1986. V. 58. № 1. P. 1–16.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (859KB)
3.

Baixar (155KB)
4.

Baixar (132KB)
5.

Baixar (200KB)
6.

Baixar (30KB)

Declaração de direitos autorais © М.П. Морозова, А.Д. Куренкова, Ю.Л. Волкова, А.Б. Бердалин, Е.Н. Банзелюк, Б.А. Умарова, Е.В. Лукошкова, С.А. Гаврилова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies