Diversity and Transformation of the Freshwater Planktonic Protist Community Along the Estuarine Tributary Zone of the Large Plainland Reservoir: 18S RRNA Gene Metabarkoding

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The first data on the composition and diversity of summer planktonic protist community in the Usinsky Bay and the adjacent water area of the Kuibyshev Reservoir, obtained using high-throughput sequencing of the 18S ribosomal RNA gene, are presented. In the structure of the protist community, 1150 OTUs were found, among which representatives of the SAR supertaxon (Stramenopiles-Alveolata-Rhizaria) predominate. In the jointed library, OTUs are dominated by Stramenopiles, represented, in descending order, by Chrysophyceae (8.5%), Opalozoa (8.3%), Diatomea (4.7%), and Oomycetes (Peronosporomycetes) (3.7%), and by the number of sequences, by Alveolata (62.0%) and, first of all, Ciliata (56.9%). Four interconnected communities of protists were distinguished: the river section, the bay itself, the mouth zone, and the reservoir outside the influence of the bay (above the mouth). The most contrasting were the communities of the river area and the area of the reservoir above the mouth. In general, the studied estuarine system has the features of both an ecocline and an ecotone. The development of the phototrophic component of eukaryotic plankton is mainly influenced by competitive relationships with cyanobacteria. Cyanobacterial “bloom” also affects the structure of the heterotrophic part of the community, although this effect is less pronounced. The development of Archaeplastida, Rhizaria, and minor groups of protists positively correlates with the proportion of Metazoa sequences in samples, which reflects the intensity of metazooplankton pressure. Some of the obtained sequences belong to taxa rarely found in freshwater, such as Bolidophyceae and Rhodelphida. These finds expand the biogeography of these groups, which have so far been found in very few freshwater reservoirs.

Авторлар туралы

M. Umanskaya

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS

Хат алмасуға жауапты Автор.
Email: mvumansk67@gmail.com
Russia, 445003, Togliatti, 10, Komzin str.

M. Gorbunov

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS

Email: mvumansk67@gmail.com
Russia, 445003, Togliatti, 10, Komzin str.

S. Bykova

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS

Email: mvumansk67@gmail.com
Russia, 445003, Togliatti, 10, Komzin str.

N. Tarasova

Samara Federal Research Scientific Center RAS, Institute of Ecology of Volga River Basin RAS

Email: mvumansk67@gmail.com
Russia, 445003, Togliatti, 10, Komzin str.

Әдебиет тізімі

  1. Андреева В.А., Быкова С.В., Уманская М.В., Тарасова Н.Г. Свободноживущие инфузории Усинского залива (Куйбышевское водохранилище) в разгар цианобактериального “цветения” // Известия Самарского научного центра Российской академии наук. 2021. Т. 23. № 5(103). С. 127–134.
  2. Быкова С.В. Структура и пространственное распределение инфузорий в планктоне водохранилищ Средней и Нижней Волги // Биология внутренних вод. 2021. № 4. С. 353–366.
  3. Горохова О.Г., Зинченко Т.Д. Фитопланктон равнинной р. Уса и ее притоков (бассейн Куйбышевского водохранилища) // Поволжский экологический журн. 2018. № 4. С. 391–403.
  4. Жариков В.В. Специфика водохранилищ Волги как среды обитания гидробионтов (на примере свободноживущих инфузорий) //Теоретические проблемы экологии и эволюции (3-и Любищевские чтения). Тольятти: ИЭВБ РАН, 2000. С. 64–72.
  5. Корнева Л.Г. Фитопланктон водохранилищ бассейна Волги. Кострома: Костромской печатный дом, 2015. 284 с.
  6. Косолапов Д.Б., Копылов А.И., Косолапова Н.Г. Гетеротрофные жгутиконосцы в водной толще и донных отложениях Рыбинского водохранилища: видовой состав, численность, биомасса, роль в потреблении бактерий // Биология внутренних вод. 2017. № 2. С. 76–87.
  7. Косолапов Д.Б., Копылов А.И., Мыльникова З.М., Косолапова Н.Г. Структура микробного планктонного сообщества Шекснинского водохранилища // Тр. ИБВВ им. И.Д. Папанина РАН. 2016. № 74(77). С. 5–20.
  8. Ротарь Ю.М. Планктонные инфузории Куйбышевского водохранилища: Дис. … канд. биол. наук. СПб., 1995.
  9. Тарасова Н.Г., Уманская М.В. Видовой состав и эколого-географическая характеристика альгофлоры планктона реки Уса (Самарская область) // Фиторазнообразие Восточной Европы. 2021. Т. 15. № 4. С. 115–135.
  10. Тихоненков Д.В., Загуменный Д.Г., Беляев А.О., Плотников А.О., Герасимов Ю.В. Метабаркодинговые исследования протистов реки Волги / Биология водных экосистем в XXI в.: факты, гипотезы, тенденции: Тезисы докладов Всерос. конф. Ярославль: Филигрань, 2021. С. 181.
  11. Уманская М.В., Быкова С.В., Горбунов М.Ю., Краснова Е.С., Тарасова Н.Г. Трансформация одноклеточного планктона в системе река–залив–равнинное водохранилище в начальной фазе цианобактериального цветения // Известия Самарского научного центра Российской академии наук. 2021. Т. 23. № 5(103). С. 144–151.
  12. Фитопланктон Нижней Волги: водохранилища и низовье реки. СПб.: Наука, 2006. 229 с.
  13. Adl S.M., Bass D., Lane C.E., Lukeš J., Schoch C.L., Smirnov A., Agatha S., Berney C., Brown M.W., Burki F., Cardenas P., Cepicka I., Chistyakova L., del Campo J., Dunthorn M., Edvardsen B., Eglit Y., Guillou L., Hampl V., Heiss A.A., Hoppenrath M., James T.Y., Karnkowska A., Karpov S., Kim E., Kolisko M., Kudryavtsev A., Lahr D.J.G., Lara E., Gall L. Le, Lynn D.H., Mann D.G., Massana R., Mitchell E.A.D., Morrow C., Park J.S., Pawlowski J.W., Powell M.J., Richter D.J., Rueckert S., Shadwick L., Shimano S., Spiegel F.W., Torruella G., Youssef N., Zlatogursky V., Zhang Q. Revisions to the classification, nomenclature, and diversity of eukaryotes // J. Eukaryot. Microbiol. 2019. V. 66. № 1. P. 4–119.
  14. Andersen K.H., Aksnes D.L., Berge T., Fiksen Ø., Visser A. Modelling emergent trophic strategies in plankton // J. Plankton Res. 2015. V. 37. № 5. P. 862–868.
  15. Annenkova N.V., Giner C.R., Logares R. Tracing the origin of planktonic protists in an ancient lake // Microorganisms. 2020 V.8. № 4. P. 543.
  16. Attrill M.J., Rundle S.D. Ecotone or ecocline: ecological boundaries in estuaries // Estuar. Coast. Shelf Sci. 2002. V. 55. № 6. P. 929–936.
  17. Bock C., Olefeld J.L., Vogt J.C., Albach D.C, Boenigk J. Phylogenetic and functional diversity of Chrysophyceae in inland waters // Organisms Diversity & Evolution. 2022. V. 22. № 2. P. 327–341.
  18. Boenigk J., Wodniok S., Bock C., Beisser D., Hempe, C., Grossmann L., Lange A., Jensen M. Geographic distance and mountain ranges structure freshwater protist communities on a European scale // Metabarcoding and Metagenomics. 2018. № 2. P. e21519.
  19. Chakraborty S., Nielsen L.T., Andersen K.H. Trophic strategies of unicellular plankton // Am. Nat. 2017. V. 189. № 4. P. E77–E90.
  20. Charvet S., Vincent W.F., Lovejoy C. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy // Polar Biol. 2012. V. 35. P. 733–748.
  21. Cruaud P., Vigneron A., Fradette M.S., Dorea C.C., Culley A.I., Rodriguez M.J., Charette S.J. Annual protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: The Saint-Charles River (Canada) // Front. Microbiol. 2019. V. 10. P. 2359.
  22. David G.M., Moreira D., Reboul G., Annenkova N.V., Galindo L.J., Bertolino P., López–Archilla A.I., Jardillier L., López–García P. Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake // Env. Microbiol. 2021. V. 23. № 3. P. 1436–1451.
  23. Debroas D., Domaizon I., Humbert J. F., Jardillier L., Lepère C., Oudart A., Taïb N. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. // FEMS Microbiol. Ecol. 2017. V. 93. № 4. P. fix023.
  24. Dorrell R.G., Azuma T., Nomura M., de Kerdrel G.A., Paoli L., Yang S., Bowler C., Ishii K.-I., Miyashita H., Gillian H., Gile G.H., Kamikawa R. Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes // Proc. Natl. Acad. Sci. 2019. V. 116. № 14. P. 6914–6923.
  25. Edgar R. UPARSE: highly accurate OTU sequences from microbial amplicon reads // Nat. Methods. 2013. V. 10. № 10. P. 996–998.
  26. Fujimoto M., Cavaletto J., Liebig J.R., McCarthy A., Vanderploeg H.A., Denef V.J. Spatiotemporal distribution of bacterioplankton functional groups along a freshwater estuary to pelagic gradient in Lake Michigan // J. Great Lakes Res. 2016. V. 42. № 5. P. 1036–1048.
  27. Gawryluk R.M., Tikhonenkov D.V., Hehenberger E., Husnik F., Mylnikov A.P., Keeling P.J. Non-photosynthetic predators are sister to red algae // Nature. 2019. V. 572. № 7768. P. 240–243.
  28. Geisen S., Vaulot D., Mahé F., Lara E., de Vargas C., Bass D. A user guide to environmental protistology: primers, metabarcoding, sequencing, and analyses // BioRxiv. 2019. P. 850610.
  29. Gong J., Dong J., Liu X., Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates // Protist. 2013. V. 164. № 3. P. 369–379.
  30. Herdendorf C.E. Great lakes estuaries // Estuaries. 1990. V. 13. № 4. P. 493–503.
  31. Kuwata A., Yamada K., Ichinomiya M., Yoshikawa S., Tragin M., Vaulot D., Lopes dos Santos A. Bolidophyceae, a sister picoplanktonic group of diatoms – a review // Front. Mar. Sci. 2018. V. 5. P. 370.
  32. Li R., Jiao N., Warren A., Xu D. Changes in community structure of active protistan assemblages from the lower Pearl River to coastal Waters of the South China Sea // Eur. J. Protistol. 2018. V. 63. P. 72–82.
  33. Likens G.E. (Ed.) Plankton of inland waters. Academic Press, 2010. 412 p.
  34. Loken L.C., Small G.E., Finlay J.C. Sterner R.W., Stanley E.H. Nitrogen cycling in a freshwater estuary // Biogeochemistry. 2016. V. 127. № 2. P. 199–216.
  35. Lozupone C., Knight R. UniFrac: a new phylogenetic method for comparing microbial communities // Applied and environmental microbiology. 2005. V. 71. № 12. P. 8228–8235.
  36. Mangot J.F., Domaizon I., Taib N., Marouni N., Duffaud E., Bronner G., Debroas D. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes // Environ. Microbiol. 2013. V. 15. № 6. P. 1745–1758.
  37. Nowak B.M., Ptak M. The effect of a water dam on Lake Powidzkie and its vicinity // Bull. Geogr. Phys. Geogr. Ser. 2018. V. 15. № 1. P. 5–13.
  38. Obodovskyi O., Habel M., Szatten D., Rozlach Z., Babiński Z., Maerker M. Assessment of the Dnieper Alluvial Riverbed stability affected by intervention discharge downstream of Kaniv Dam // Water. 2020. V. 12. № 4. P. 1104.
  39. Pruesse E., Peplies J., Glöckner F.O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes // Bioinformatics. 2012. V. 28. P. 1823–1829.
  40. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2013. V. 41(D1). P. D590–D596.
  41. Richards T.A., Vepritskiy A.A., Gouliamova D.E., Nierzwicki-Bauer S.A. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages // Environ. Microbiol. 2005. V. 7. № 9. P. 1413–1425.
  42. Saad J.F., Schiaffino M.R., Vinocur A., O’Farrell I., Tell G., Izaguirre I. Microbial planktonic communities of freshwater environments from Tierra del Fuego: dominant trophic strategies in lakes with contrasting features. // J. Plankton Res. 2013. V. 35. № 6. P. 1220–1233.
  43. Singer D., Seppey C. V., Lentendu G., Dunthorn M., Bass D., Belbahri L., Blandenier Q., Debroas D., Arjen de Groot G.A., de Vargas C., Domaizon I. Duckert C., Izaguirre I., Koenig I., Mataloni G., Schiaffino M.R., Mitchell E.A.D., Geisen S., Lara, E. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems // Environ. Int. 2021. V. 146. P. 106262.
  44. Stoecker D.K., Hansen P.J., Caron D.A., Mitra A. Mixotrophy in the marine plankton // Ann. Rev. Marine Sci. 2017. V. 9. P. 311–335.
  45. Suzuki S., Matsuzaki R., Yamaguchi H., Kawachi M. What happened before losses of photosynthesis in cryptophyte algae? // Molecular biology and evolution. 2022. V. 39. № 2. P. msac001.
  46. Telesh I.V., Khlebovich V.V. Principal processes within the estuarine salinity gradient: a review // Mar. Pollut. Bull. 2010. V. 61. № 4–6. P. 149–155.
  47. Wang J., Fu Z., Qiao H., Liu F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China // Sci. Total Environ. 2019. V. 650. P. 1392–1402.
  48. Weber A.A., Pawlowski J. Can abundance of protists be inferred from sequence data: a case study of Foraminifera // PloS one. 2013 V. 8. № 2. P. e56739.
  49. Wingett S.W., Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control // F1000Research. 2018. V. 7. P. 1338.
  50. Xu H., Zhang S., Ma G., Zhang Y., Li Y., Pei H. 18S rRNA gene sequencing reveals significant influence of anthropogenic effects on microeukaryote diversity and composition along a river-to-estuary gradient ecosystem // Sci. Total Environ. 2020. V. 705. P. 135910.
  51. Zhao F., Filker S., Xu K., Huang P., Zheng S. Microeukaryote communities exhibit phyla-specific distance-decay patterns and an intimate link between seawater and sediment habitats in the Western Pacific Ocean // Deep-Sea Res. I: Oceanogr. Res. Pap. 2020. V. 160. P. 103279.

Қосымша файлдар


© М.В. Уманская, М.Ю. Горбунов, С.В. Быкова, Н.Г. Тарасова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>