Diversity of alleles of the main histocompatibility complex in the striped field mouse (Apodemus agrarius Pallas, 1971) in the Moscow parks
- Authors: Feoktistova N.Y.1, Karmanova T.N.1, Meschersky I.G.1, Meschersky S.I.1, Surov A.V.1
-
Affiliations:
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
- Issue: No 2 (2025)
- Pages: 160-174
- Section: ГЕНЕТИКА
- URL: https://journals.rcsi.science/1026-3470/article/view/291887
- DOI: https://doi.org/10.31857/S1026347025020043
- ID: 291887
Cite item
Full Text
Abstract
Among a number of stress factors affecting mammals in urban environments, a high parasite load plays an important role. The resistance of a population to this factor can be assessed by the allelic diversity of certain genes, for example, the major histocompatibility complex (MHC), which play a key role in the immune defense. We analyzed the allelic diversity of exon 2 of the DRB gene in striped field mouse populations in four parks in Moscow. Using amplicon sequencing of the target fragment on the Illumina NovaSeq 6000 platform, 27 alleles were discovered, nine of which were common to those known for the bank vole. The largest number of alleles, including unique ones, were noted in the least urbanized of the studied areas with a multispecies community of small mammals (Bitsevsky Park). Also, the greatest diversity of individual genotypes and a relatively smaller number of alleles in the individual’s genotype were observed here. In the other three parks, located in areas with a higher degree of urbanization, the number of alleles represented in the population and the diversity of individual genotypes were smaller, but the number of alleles represented in the genotype of one individual was higher. In the most urbanized area, in the absence of other small mammal species in the community (Neskuchny Garden), the absence of neutral variability was noted – each of the alleles present in the population encoded a unique amino acid sequence with an inherent variant of the antigen-binding site. It is assumed that these differences reflect the ways of adaptation depending on the degree of anthropogenic pressure. An assessment of the similarity of populations based on the presence of common alleles showed greater similarity in pairs from the right (Neskuchny Garden and Bitsevsky Park) and from the left (Terletsky Park and the Main Botanical Garden) banks of the Moscow river which may reflect the historical connection of these territories.
Full Text

About the authors
N. Y. Feoktistova
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Author for correspondence.
Email: feoktistovanyu@gmail.com
Russian Federation, 33 Leninsky pr., Moscow, 119071
T. N. Karmanova
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: feoktistovanyu@gmail.com
Russian Federation, 33 Leninsky pr., Moscow, 119071
I. G. Meschersky
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: feoktistovanyu@gmail.com
Russian Federation, 33 Leninsky pr., Moscow, 119071
S. I. Meschersky
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: feoktistovanyu@gmail.com
Russian Federation, 33 Leninsky pr., Moscow, 119071
A. V. Surov
A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: feoktistovanyu@gmail.com
Russian Federation, 33 Leninsky pr., Moscow, 119071
References
- Андреевских А.В. Эколого-физиологические и этологические адаптации полевой мыши (Apodemus agrarius Pall.) в городской среде. Автореф. дис. … канд. биол. наук. Томский государственный университет, 2012. Томск. 24 с.
- Баруш В. Синантропизация и синурбанизация позвоночных животных как процесс формирования связей между популяциями животных и человеком // Studia Geographica (Brno), 1980. V. 71. № 1. С. 1–25.
- Гливич И. Исследования процесса синурбанизации животных на примере городских популяций // Studia Geographica (Brno), 1980. V. 71. № 1. С. 95–104.
- Исаков Ю. Изменение условий жизни животных в Москве в связи с ростом и благоустройством города // Животное население Москвы и Подмосковья, 1967 С. 74–79.
- Карасева Е.В., Телицына А.Ю., Самойлов Б.Л. Млекопитающие Москвы в прошлом и настоящем. М.: Наука, 1999. 246 с.
- Карманова Т., Горелышева Д. Гельминтофауна мышевидных грызунов на территории г. Москвы // Поволжский экологический журнал, 2022. № 2. С. 135–149. https://doi.org/10.35885/1684-7318-2022-2-135-149
- Карманова Т.Н., Феоктистова Н.Ю., Фетисова Е.-Е.А., Мосалов А.А., Суров А.В. Экология города: ретроспективы и перспективы изучения // Журнал общей биологии, 2021. Т. 82. № 3. С. 163–174. https://doi.org/10.31857/S0044459621030039
- Клауснитцер Б. Экология городской фауны. М.: Мир, 1990. 270 с.
- Ключник Н., Старостина А. О несинантропных видах грызунов Ленинграда // Зоологический журнал., 1963. Т. 42. № 10. С. 1554–1560.
- Кузнецов Б.А. Предварительный обзор стационарного распространения позвоночных в Погонно-Лосиноостровском лесничестве // Тр. по лесн. опытн. делу, 1928. Т. 4. № 68. С. 15–36.
- Огнев С.И. Fauna Mosquensis. Опыт описания фауны Московской губернии.т. 1. Млекопитающие ч. 1. Chiroptera, Insectivora, Rodentia. М: Изд. Комиссии по исслед. фауны Моск. Губерн, 1913. 310 с.
- Паровщиков В.Я. Очерк фауны Тимирязевской c/х академии // Всерос. об-во охраны природы. Т. 8. Ч. 2. 1941. С. 304–310.
- Петров В., Леонтьева М., Соловьев Ю., Лисин С., Прокопьева Н. К изучению фауны и экологии грызунов большого города // Грызуны: Материалы 5-го Всесоюзного совещания, 1980. С. 434–435.
- Суров А.В., Карманова Т.Н., Кацман Е.А., Зайцева Е.А., Феоктистова Н.Ю. От агрофила к синурбисту: как обыкновенный хомяк (Cricetus cricetus) осваивает городскую среду // Зоологический журнал, 2023. Т. 102. № 4. С. 453–465. doi: 10.31857/S0044513423040153
- Терехова В.А. Биодиагностика и оценка воздействий на окружающую среду: учебное пособие. М.: ГЕОС, 2023. 102 с. doi: 10.55959/MSU0137-0944-17-2023-78-2-35-45
- Тихонова Г.Н., Тихонов И.А. Биотопическое распределение и особенности размножения фоновых видов грызунов на северо-востоке Московской области // Зоологический журнал, 2003. Т. 82. № 11. С. 1357–1367.
- Тихонова Г.Н., Тихонов И.А., Богомолов П.Л., Бодяк Н.Д., Суров А.В., Распределение мелких млекопитающих и типизация незастроенных территорий г. Москвы // Успехи современной биологии, 1997. Т. 117. № 2. С. 218–239.
- Тихонова Г.Н., Тихонов И.А., Суров А.В., Богомолов П.Л., Котенкова Е.В., Экологические аспекты формирования фауны мелких млекопитающих урбанистических территорий Средней полосы России. М.: Товарищество научных изданий КМК, 2012. 373 с.
- Транквилевский Д.В., Царенко В.А., Жуков В.И. Современное состояние эпизоотологического мониторинга за природными очагами инфекций в Российской Федерации // Медицинская паразитология и паразитарные болезни, 2016. № 2. C. 19–24.
- Феоктистова Н.Ю., Мещерский И.Г., Карманова Т.Н., Гуреева А.В., Суров А.В. Разнообразие аллелей главного комплекса гистосовместимости у обыкновенного хомяка (Cricetus cricetus) в городской и сельской популяциях // Известия РАН, сер. биологическая, 2022. № 5. С. 470–481. https://doi.org/10.31857/S1026347022050079
- Хляп Л.А., Кучерук В.В., Тупикова Н.В., Варшавский А.А. Оценка разнообразия грызунов населенных пунктов. Животные в городе. Мат-лы науч.-практ. конф. М.: ИПЭЭ РАН, 2003. С. 26–29
- Черноусова Н.Ф. Гельминтоценозы грызунов в трансформированных урбанизацией лесных экосистемах // Фундаментальные исследования, 2013. № 10. С. 1770–1777.
- Acevedo-Whitehouse K., Cunningham A.A. Is MHC enough for understanding wildlife immunogenetics? // Trends in Ecology and Evolution, 2006. V. 21. № 8. P. 433–438. 10.1016/j.tree.2006.05.010' target='_blank'>https://doi: 10.1016/j.tree.2006.05.010
- Adamczewska-Andrzejewska K., Mackin-Rogalska R., Nabaglo L. The effect of urbanization on density and population structure of Apodemus agrarius (Pallas, 1771) // Polish ecological studies, 1988. V. 14. № 1–2. P. 197–211.
- Bandelt H.-J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies // Molecular biology and evolution, 1999. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
- Bernatchez L., Landry C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? // Journal of Evolutionary Biology, 2003. V. 16. № 3. P. 363–377. https://doi.org/10.1046/j.1420-9101.2003.00531.x
- Biedrzycka A., Kloch A., Buczek M., Radwan J. Major histocompatibility complex DRB genes and blood parasite loads in fragmented populations of the spotted suslik Spermophilus suslicus // Mammalian Biology, 2011. V. 76. № 6. P. 672–677. https://doi.org/10.1016/j.mambio.2011.05.002
- Brown, J.H., Jardetzky, T.S., Gorga, J.C., Stern, L.J., Ur ban, R.G., Strominger, J.L., Wiley, D.C., Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1, Nature. 1993. vol. 364, № 6432, P. 33–39. https://doi.org/10.1038/364033a0
- Bushnell B., Rood J., Singer E. BBMerge–accurate paired shotgun read merging via overlap // PloS one , 2017. V. 12. № 10. e0185056. https://doi.org/10.1371/journal.pone.0185056
- Chao A., Ma K., Hsieh T., Chiu C.-H., User’s guide for online program SpadeR (Species-richness prediction and diversity estimation in R) / National Tsing Hua University, Hsinchu, Taiwan, 2016. 88 p.
- Dearborn D.C., Warren S., Hailer F. Meta‐analysis of major histocompatibility complex (MHC) class IIA reveals polymorphism and positive selection in many vertebrate species // Molecular ecology,2022. V. 31. № 24. P. 6390–6406. https://doi.org/10.1111/mec.16726
- Doherty P.C., Zinkernagel R.M. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex // Nature,1975. V. 256. № 5512. P. 50–52. https://doi.org/10.1038/256050a0
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010. T. 26. № 19. P. 2460-2461. https://doi.org/10.1093/bioinformatics/btq461
- Edgar, R.C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 2016. P. 081257. https://doi.org/10.1101/081257
- Figueroa F., Gúnther E., Klein J. MHC polymorphism pre-dating speciation // Nature, 1988. V. 335. № 6187. P. 265–267. https://doi.org/10.1038/335265a0
- Gigliotti A.K., Bowen W.D., Hammill M.O., Puryear W.B., Runstadler J., Wenzel F.W., Cammen K.M., Sequence diversity and differences at the highly duplicated MHC-I gene reflect viral susceptibility in sympatric pinniped species // Journal of Heredity, 2022 V. 113. № 5. P. 525–537. https://doi.org/10.1093/jhered/esac030
- Gliwicz J. Ecological aspect of synurbanization of the striped field mouse, Apodemus agrarius // Wiadomosci Ekologiczne, 1980.. V. 26. P. 117–124.
- Gortat T., Rutkowski R., Gryczynska-Siemiatkowska A., Kozakiewicz A., Kozakiewicz M. Genetic structure in urban and rural populations of Apodemus agrarius in Poland // Mammalian Biology, 2013. V. 78. № 3. P. 171–177. https://doi.org/10.1016/j.mambio.2012.07.155
- Harris S.E., Munshi-South J., Obergfell C., O’Neill R. Signatures of Rapid Evolution in Urban and Rural Transcriptomes of White-Footed Mice (Peromyscus leucopus) in the New York Metropolitan Area // Plos One, 2013. V. 8. № 8. 10.1371/journal.pone.0074938. https://doi.org/10.1371/journal.pone.0074938
- Harris S.E., Munshi‐South J. Signatures of positive selection and local adaptation to urbanization in white‐footed mice (Peromyscus leucopus) // Molecular Ecology, 2017. V. 26. № 22. P. 6336–6350. https://doi.org/10.1111/mec.14369
- Janeway C.A. How the immune system works to protect the host from infection: a personal view // Proceedings of the National Academy of Sciences , 2001. V. 98. № 13. P. 7461–7468. https://doi.org/10.1073/pnas.13120299
- Johnson M.T.J., Munshi-South J. Evolution of life in urban environments // Science , 2017. V. 358. № 6363. https://doi.org/10.1126/science.aam8327
- Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 1992. V. 8. № 3. P. 275–282. https://doi.org/10.1093/bioinformatics/8.3.275
- Khlyap L., Glass G., Kosoy M., Rodents in urban ecosystems of Russia and the USA //Rodents: Habitat, Pathology and Environmental Impact S.D. / Ed. Triunveri A., Scalise D . Nova Science Pub Inc. 2012. P. 1–22.
- Klawitter J. Zur Verbreitung der Fledermamause in Berlin (West) von 1945-1976 // Myotis, 1976. № 14. S. 3–14.
- Klein J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis // Human immunology,1987. V. 19. № 3. P. 155–162.
- Klein J., Sato A., Nikolaidis N.MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics // Annu. Rev. Genet., 2007. V. 41. № 1. P. 281–304. https://doi.org/10.1146/annurev.genet.41.110306.130137
- Klenke R. Okofaunistische Unterschiedlicher Habitatinsein in Leipzig // Wiss. Karl-Marx-Univ. Leipzig. Math.-naturwiss., 1986. R. Bd. 34. № 6. S. 607–618. https://doi.org/10.1089/vbz.2014.1629
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms // Molecular biology and evolution, 2018. V. 35. № 6. P. 1547. doi: 10.1093/molbev/msy096
- Lahr E.C., Dunn R.R., Frank S.D. Getting ahead of the curve: cities as surrogates for global change // Proc. R. Soc. B-Biol. Sci., 2018. V. 285. №. 1882. P. 20180643. https://doi.org/10.1098/rspb.2018.0643
- Lighten J., Papadopulos A.S., Mohammed R.S., Ward B.J., G. Paterson I., Baillie L., Bradbury I.R., Hendry A.P., Bentzen P., Oosterhaut C., Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen // Nature communications, 2017. V. 8. № 1. P. 1294. https://doi.org/10.1038/s41467-017-01183-2
- Luniak M. Synurbization – adaptation of animal wildlife to urban development. 4th International Urban Wildlife Symposium Tucson, Univ. of Arizona, 2004. P. 50–55.
- Matzaraki, V., Kumar, V., Wijmenga, C., Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome biology, 2017. T. 18. P. 1–21. https://doi.org/10.1186/s13059-017-1207-1McDonnell M.J., MacGregor-Fors I. The ecological future of cities // Science, 2016. V. 352. № 6288. P. 936–938. https://doi.org/:10.1126/science.aaf3630
- Migalska M., Przesmycka K., Alsarraf M., Bajer A., Behnke‐Borowczyk J., Grzybek M., Behnke J.M., Radwan J. Long term patterns of association between MHC and helminth burdens in the bank vole support Red Queen dynamics // Molecular Ecology, 2022. V. 31. № 12. P. 3400–3415. https://doi.org/10.1111/mec.16486
- Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions // Molecular Biology and Evolution, 1986. V. 3 № 8. P. 418–426. https://doi.org/10.1093/oxfordjournals.molbev.a040410
- Pelikan J., Homolka M., Zeida J. Мелкие млекопитающие городской агломерации на примере города Брно // Studia geographica, 1980. V. 71. № 1. P. 95–105.
- Petrosyan V., Dinets V., Osipov F., Dergunova N., Khlyap L. Range Dynamics of Striped Field Mouse (Apodemus agrarius) in Northern Eurasia under Global Climate Change Based on Ensemble Species Distribution Models // Biology, 2023. V. 12. № 7. http://10.3390/biology12071034.
- Radwan J., Biedrzycka A., Babik W. Does reduced MHC diversity decrease viability of vertebrate populations? // Biological conservation, 2010. V. 143. № 3. P. 537–544. https://doi.org/10.1016/j.biocon.2009.07.026
- Richman A.D., Herrera L.G., Nash D., Schierup M.H. Relative roles of mutation and recombination in generating allelic polymorphism at an MHC class II locus in Peromyscus maniculatus // Genetics Research, 2003. V. 82. № 2. P. 89–99. https://doi.org/10.1017/S0016672303006347
- Schilthuizen M. Darwin comes to town. How the Urban Jungle Drives Evolution, 2018. London: Quercus Edition Ltd. 344 p.
- Shiina T., Yamada Y., Aarnink A., Suzuki S., Masuya A., Ito S., Ido D., Yamanaka H., Iwatani C., Tsuchiya H., Ishigaki H., Itoh Y., Ogasawara K., Kulski J.K., Blancher A., 2015. Discovery of novel MHC-class I alleles and haplotypes in Filipino cynomolgus macaques (Macaca fascicularis) by pyrosequencing and Sanger sequencing // Immunogenetics. V. 67. № 10. P. 563–578. https://doi.org/10.1007/s00251-015-0867-9
- Smulders M.J.M., Snoek L.B., Booy G., Vosman B. Complete loss of MHC genetic diversity in the Common Hamster (Cricetus cricetus) population in The Netherlands. Consequences for conservation strategies // Conserv Genet., 2003. № 4. P. 441–451. https://doi.org/10.1023/A:1024767114707
- Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation // Frontiers in zoology, 2005. V. 2. № 1. P. 1–18. https://doi.org/10.1186/1742-9994-2-16
- Sutherland W.J., Freckleton R.P., Godfray H.C.J., Beissinger S.R., Benton T., Cameron D.D., Carmel Y., Coomes D.A., Coulson T. ,Emmerson M. C. , Hails R.S., Hays G.C., Hodgson D.J. , Hutchings M.J., Johnson D., Jones J.P. G., Keeling M.J., Kokko H., Kunin W.E., Lambin X. , Lewis O.T., Malhi Y., Mieszkowska N., Milner-Gulland E. J., Norris K., Phillimore A.B., Purves D.W., Reid J.M. , Reuman D.C.,Thompson K., Travis J.M. J., Turnbull L.A., Wardle D.A., Wiegand T. Identification of 100 fundamental ecological questions // Journal of Ecology, 2013. V. 101. № 1. P. 58–67. https://doi.org/10.1111/1365-2745.12025
- United Nations World Urbanization Prospects: The 2018 Revision, 2018.
- Villesen P. FaBox: an online toolbox for fasta sequences // Mol Ecol Notes, 2007. V. 7. № 6. P. 965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x
- Winternitz J.C., Wares J.P. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents // Ecology and Evolution, 2013. V. 3. № 6. P. 1552–1568. https://doi.org/10.1002/ece3.567
- Zhou J., Zhang X., Shen L. Urbanization bubble: Four quadrants measurement model // Cities , 2015. V. 46. P. 8–15. https://doi.org/10.1016/j.cities.2015.04.007
Supplementary files
