Effect of Wolbachia on morphology and several aspects of host immunity of Habrobracon hebetor (Say)

Cover Page

Cite item

Full Text

Abstract

Two lines of the parasitoid Habrobracon hebetor were analysed: one infected with the Wolbachia endosymbiotic bacterium and the other free of it. Differences in morphological characters were observed between the lines, specifically in the degree of cuticle melanisation and body size of adult parasitoids. The sizes of both male and female parasitoids were significantly larger in the line infected with the bacterium. The research found that Wolbachia affects the levels of dopamine, tyrosine, and phenoloxidase activity, as well as the amount of proline in the whole body homogenate during different stages of parasitoid development.

Full Text

Restricted Access

About the authors

E. A. Chertkova

Institute of Systematics and Ecology of Animals SB RAS

Author for correspondence.
Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091

A. A. Alekseev

Institute of Systematics and Ecology of Animals SB RAS; Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS

Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091; 3 Institutskaya str., Novosibirsk, 630090

A. P. Lobanova

Institute of Systematics and Ecology of Animals SB RAS

Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091

K. A. Zolotareva

Institute of Systematics and Ecology of Animals SB RAS

Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091

N. A. Kryukova

Institute of Systematics and Ecology of Animals SB RAS

Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091

References

  1. Исмаилов В. Я., Агасьева И. С., Настасий А. С. Habrobracon hebetor Say – эффективный паразит в борьбе с яблонной плодожоркой // Садоводство и виноградарство. 2020. № 2. С. 52–57. https://doi.org/10.31676/0235-2591-2020-2-52-57
  2. Abràmoff M. D., Magalhães P. J., Ram S. J. Image processing with ImageJ // Biophotonics Int. 2004. V. 11. P. 36–42.
  3. Aderem A., Underhill D. M. Mechanisms of phagocytosis in macrophages // Annu. Rev. Immunol. 1999. V. 17. P. 593–623. https://doi.org/10.1146/annurev.immunol.17.1.593
  4. Ashida M., Brey P. T. Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix // Proc. Nati. Acad. Sci. 1995. V. 92. P. 10698–10702. https://doi.org/10.1073/pnas.92.23.10698
  5. Ashida M., Brey P. T. Recent advances in research on the insect phenoloxidase cascade. In Molecular Mechanisms of Immune Responses in Insects; Brey, P.T., Hultmark, D.L., Eds.; Chapman and Hall: London. 1997. P. 133–172.
  6. Aso Y., Kramer K. J., Hopkins T. L., Lookhart G. L. Characterization of haemolymph protyrosinase and a cuticular activator from Manduca sexta (L.) // Insect Biochem. 1985. V. 15. P. 9–17. https://doi.org/10.1016/0020-1790(85)90038-1
  7. Bagheri Z., Talebi A. A., Asgari S., Mehrabadi M. Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation // J. Invertebr. Pathol. 2019. V. 163. P. 1–7. https://doi.org/10.1016/j.jip.2019.02.005
  8. Barek H., Sugumaran M., Ito S., Wakamatsu K. Insect cuticular melanins are distinctly different from those of mammalian epidermal melanins // Pigment Cell & Melanoma Res. 2018. V. 31. P. 384–392. https://doi.org/10.1111/pcmr.12672
  9. Bates L. S., Waldren R. P., Teare I. D. Rapid determination of free proline for water-stress studies // Plant and soil. 1973. V. 39. P. 205–207. https://doi.org/10.1007/BF00018060
  10. Bi J., Sehgal A., Williams J. A., Wang Y.-F. Wolbachia affects sleep behavior in Drosophila melanogaster // J. Insect Physiol. 2018. V. 107. P. 81–88. https://doi.org/10.1016/j.jinsphys.2018.02.011
  11. Bi J., Wang Y.-F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts // Insect Sci. 2020. V. 27. P. 846–858. https://doi.org/10.1111/1744-–7917.12731
  12. Bian G., Joshi D., Dong Y., Lu P., Zhou G., Pan X., Xu Y., Dimopoulos G., Xi Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection // Science. 2013. V. 340. P. 748–751. https://doi.org/10.1126/science.1236192
  13. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
  14. Becchimanzi A., Avolio M., Bostan H., Colantuono C., Cozzolino F., Mancini D., Chiusano M. L., Pucc P., Caccia S., Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans // BMC Genomics. 2020. V. 21. P. 34. https://doi.org/10.1186/s12864-019-6396-4
  15. Bursell E. The role of proline in energy metabolism. In Energy Metabolism in Insects; Downer R., Eds.; Springer: Boston, MA. 1981. P. 135–154. https://doi.org/10.1007/978-1-4615-9221-1_5
  16. Carrington L. B., Tran B. C. N., Le N. T. H., Luong T. T. H., Nguyen T. T., Nguyen P. T., Nguyen C. V. V., Nguyen H. T. C., Vu T. T., Vo L. T., Le D. T., Vu N. T., Nguyen G. T., Luu H. Q., Dang A. D., Hurst T. P., O’Neill S. L., Tran V. T., Kien D. T. H., Nguyen N. M., Wolbers M., Wills B., Simmons C. P. Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes // Proc. Natl. Acad. Sci. 2018. V. 115. P. 361–366. https://doi.org/10.1073/pnas.1715788115
  17. Cerenius L., Söderhäll K. Immune properties of invertebrate phenoloxidases // Dev. Comp. Immunol. 2021. V. 122. 104098. https://doi.org/10.1016/j.dci.2021.104098
  18. Evans O., Caragata E. P., McMeniman C. J., Woolfit M., Green D. C., Williams C. R., Franklin C. E., O’Neill S. L., McGraw E. A. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis // J. Exp. Biol. 2009. V. 212. V. 1436–1441. https://doi.org/10.1242/jeb.028951
  19. Fearon D. T. Seeking wisdom in innate immunity // Nature. 1997. V. 388. P. 323–324. https://doi.org/10.1038/40967
  20. Fenn K., Blaxter M. Wolbachia genomes: revealing the biology of parasitism and mutualism // Trends Parasitol. 2006. V. 22. P. 60–65. https://doi.org/10.1016/j.pt.2005.12.012
  21. Ge C., Hu J., Zhao Z., Hoffmann A. A., Ma S., Shen L., Fang J., Zhu J., Yu W., Jiang W. Phylogeny and density dynamics of Wolbachia infection of the health pest Paederus fuscipes Curtis (Coleoptera: Staphylinidae) // Insects. 2020. V. 11. 625. P. 1–11. https://doi.org/10.3390/insects11090625
  22. Gruntenko N. Е., Ilinsky Y. Y., Adonyeva N. V., Burdina E. V., Bykov R. A., Menshanov P. N., Rauschenbach I. Y. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions // BMC Evol. Biol. 2017. V. 17. P. 15–22. https://doi.org/10.1186/s12862-017-1104-y
  23. Gupta V., Vasanthakrishnan R. B., Siva-Jothy J., Monteith K. M., Brown S. P., Vale P. F. The route of infection determines Wolbachia antibacterial protection in Drosophila // Proc. R. Soc. B. 2017. Vol. 284. 20170809. http://dx.doi.org/10.1098/rspb.2017.0809
  24. Hall M., Scott T., Sugumaran M., Söderhäll K., Law J. H. Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning // Proc. Natl Acad. Sci. 1995. V. 92. P. 7764–7768. https://doi.org/10.1073/pnas.92.17.7764
  25. Hedges L. M., Brownlie J. C., O’Neill S. L., Johnson K. N. Wolbachia and virus protection in insects // Science. 2008. V. 322. P. 702. https://doi.org/10.1126/science.1162418
  26. Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A., Werren J. H. How many species are infected with Wolbachia? А statistical analysis of current data // FEMS microbiology letters. 2008. V. 281. P. 215–220. https://doi.org/10.1111/j.1574-6968.2008.01110.x
  27. Huang C. Y., Chou S. Y., Bartholomay L. C., Christensen B. M., Chen C. C. The use of gene silencing to study the role of dopa decarboxylase in mosquito melanization reactions // Insect Mol. Biol. 2005. V. 14. P. 237–244. https://doi.org/10.1111/j.1365-2583.2004.00552.x
  28. Ignatova Z., Gierasch L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant // Proc. Natl. Acad. Sci. 2006. V. 103. P. 13357–13361. https://doi.org/10.1073/pnas.0603772103
  29. Jiménez N. E., Gerdtzen Z. P., Olivera-Nappa, Á. Salgado J. C., Conca C. A systems biology approach for studying Wolbachia metabolism reveals points of interaction with its host in the context of arboviral infection // PLoSNegl. Trop. Dis. 2019. V. 13. e0007678. https://doi.org/10.1371/journal.pntd.0007678
  30. Kageyama D., Narita S., Imamura T., Miyanoshita A. Detection and identification of Wolbachia endosymbionts from laboratory stocks of stored-product insect pests and their parasitoids // J. Stored Prod. Res. 2010. V. 46. P. 13–19. https://doi.org/10.1016/j.jspr.2009.07.003
  31. Kanost M. R., Gorman M. J. Phenoloxidases in insect immunity. In the Insect immunology; Beckage N. E., Eds.; Academic Press: San Diego. 2008. P. 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9
  32. Karpova E. K., Bobrovskikh M. A., Deryuzhenko M. A., Shishkina O. D., Gruntenko N. E. Wolbachia Effect on Drosophila melanogaster Lipid and Carbohydrate Metabolism // Insects. 2023. V. 14. 357. P. 1–13. https://doi.org/10.3390/insects14040357
  33. Kempf B., Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments // Arch. Microbiol. 1998. V. 170. P. 319–330. https://doi.org/10.1007/s002030050649
  34. Klowden M. J. Physiological Systems in Insects. Third Edition; Academic Press: Boston, MA, USA. 2013. doi: 10.1016/B978-0-12-415819-1.00001-5.
  35. Kopácek P., Weise C., Götz P. The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme // Insect Biochem. Mol. Boil. 1995. V. 25. P. 1081–1091. http://dx.doi.org/10.1016/0965-1748(95)00040-2
  36. Kryukova N. A., Dubovskiy I. M., Chertkova E. A., Vorontsova Y. L., Slepneva I. A., Glupov V. V. The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae // J. Insect Physiol. 2011. V. 57. P. 796–800. doi: 10.1016/j.jinsphys.2011.03.008
  37. Kryukova N. A., Kryukov V. Y., Polenogova O. V., Chertkova Е. А., Tyurin M. V., Rotskaya, Alikina T., Kabilov M. R., Glupov V. V. The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae) // Arch. Insect Biochem. Physiol. 2023. e22053. https://doi.org/10.1002/arch.22053
  38. Kumar S., Christophide, G. K., Cantera R., Charles B., Han Y. S., Meister S., George Dimopoulos G., Kafatos F. C., Barillas-Mury C. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae // Proc. Natl. Acad. Sci. 2003. V. 100. P. 14139–14144. https://doi.org/10.1073/pnas.2036262100.
  39. Kumar T. K., Samuel D., Jayaraman G., Srimathi T., Yu C. The role of proline in the prevention of aggregation during protein folding in vitro // Biochem. Mol. Biol. Int. 1998. V. 46. P. 509–517. https://doi.org/10.1080/15216549800204032
  40. Lakshmana M. K., Raju T. R. An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat // Anal. Biochem. 1997. V. 246. P. 166–170. https://doi.org/10.1006/abio.1996.9997
  41. Landmann F., Foster J. M., Slatko B., Sullivan W. Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues // PLoSNegl. Trop. Dis. 2010. V. 4. e758. https://doi.org/10.1371/journal.pntd.0000758
  42. Landmann F., Bain O., Martin C., Uni S., Taylor M. J., Sullivan W. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes // Biol. Open. 2012. V. 1. P. 536–547. https://doi.org/10.1242/bio.2012737
  43. Lavine M. D., Strand M. R. Haemocytes from Pseudoplusia includens express multiple α and β integrin subunits // Insect Mol. Biol. 2003. V. 12. P. 441–452. https://doi.org/10.1046/j.1365-2583.2003.00428.x
  44. Leitner M., Etebari K., Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection // J. Gen. Virol. 2022. V. 103. P. 1–9. https://doi.org/10.1099/jgv.0.001694
  45. Li J., Wang N., Liu Y., Qiu S. Proteomics of Nasonia vitripennis and the effects of native Wolbachia infection on N. vitripennis // Peer J. 2018. V. 6. e4905. https://doi.org/10.7717/peerj.4905
  46. Ling E., Yu X.-Q. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta // Insect Biochem. Mol. Biol. 2005. V. 35. P. 1356–1366. https://doi.org/10.1016/j.ibmb.2005.08.007
  47. Marieshwari B. N., Bhuvaragavan S., Sruthi K., Mullainadhan P., Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond // J. Comp. Physiol. B. 2023. V. 193. P. 1–23. https://doi.org/10.1007/s00360-022-01468-z
  48. Marmaras V. J., Lampropoulou M. Regulators and signalling in insect haemocyte immunity // Cell. Signal. 2009. V. 21. P. 186–195. https://doi.org/10.1016/j.cellsig.2008.08.014
  49. Ming Q. L., Shen J. F., Cheng C., Liu C. M., Feng Z. J. Wolbachia infection dynamics in Tribolium confusum (Coleoptera: Tenebrionidae) and their effects on host mating behavior and reproduction // J. Econ. Entomol. 2015. V. 108. P. 1408–1415. https://doi.org/10.1093/jee/tov053
  50. Moreira L. A., Iturbe-Ormaetxe I., Jeffery J. A., Lu G., Pyke A. T., Hedges L. M., Rocha B. C., Hall-Mendelin S., Day A., Riegler M., Hugo L. E., Johnson K. N., Kay B. H., McGraw E. A., van den Hurk A. F., Ryan P. A., O’Neill S. L. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium // Cell. 2009. V. 139. P. 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042
  51. Moreira L. A., Ye Y. H., Turner K., Eyles D. W., McGraw E. A., O’Neill S. L. The w MelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti // Parasites & vectors. 2011. V. 4. P. 1–5. https://doi.org/10.1186/1756-3305-4-28
  52. Moses S., Sinner T., Zaprasis A., Stoveken N., Hoffmann T., Belitsky B. R., Sonenshein A. L., Bremer E. Proline utilization by Bacillus subtilis: uptake and catabolism // J. Bacteriol. 2012. V. 194. P. 745–758. https://doi.org/10.1128/jb.06380-11
  53. Natarajan S. K., Zhu W., Liang X., Zhang L., Demers A. J., Zimmerman M. C., Simpson M. A., Becker D. F. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death // Free. Radic. Biol. Med. 2012. V. 53. P. 1181–1191. https://doi.org/10.1016/j.freeradbiomed.2012.07.002
  54. Neckameyer W. S., Leal S. M. Biogenic amines as circulating hormones in insects // Hormones, brain and behavior. 2002. P. 141–165. https://doi.org/10.1016/B978-012532104-4/50040-8
  55. Okayama K., Katsuki M., Sumida Y., Okada K. Costs and benefits of symbiosis between a bean beetle and Wolbachia // Anim.Behav. 2016. V. 119. P. 19–26. https://doi.org/10.1016/j.anbehav.2016.07.004
  56. Pan X., Zhou G., Wu J., Bian G., Lu P., Raikhel A. S., Xi Z. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti // Proc. Natl. Acad. Sci. 2012. V. 109. E23–E31. https://doi.org/10.1073/pnas.1116932108
  57. Parkhitko A. A., Ramesh D., Wang L., Leshchiner D., Filine E., Binari R., Olsen A. L., Asara J. M., Cracan V., Rabinowitz J. D., Brockmann A., Perrimon N. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan // Elife. 2020. V. 9. e58053. https://doi.org/10.7554/eLife.58053
  58. Pietri J. E., De Bruhl H., Sullivan W. The rich somatic life of Wolbachia // Microbiology open. 2016. V. 5. P. 923–936. https://doi.org/10.1002/mbo3.390
  59. Pimentel A. C., Cesar C. S., Martins M., Cogni R. The antiviral effects of the symbiont bacteria Wolbachia in insects // Front. Immunol. 2021. V. 11. 626329. https://doi.org/10.3389/fimmu.2020.626329
  60. Rafiee-Dastjerdi H., Hejazi M. J., Nouri G. G., Saber M. Toxicity of some biorational and conventional insecticides to cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) and its ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae) // J. Entomol. Soc. Iran. 2008. V. 28. P. 27–37.
  61. Rancès E., Ye Y. H., Woolfit M., McGraw E. A., O’Neill S. L. The relative importance of innate immune priming in Wolbachia-mediated dengue interference // PLoSPathog. 2012. V. 8. e1002548. https://doi.org/10.1371/journal.ppat.1002548
  62. Ross P. A., Endersby N. M., Yeap H. L., Hoffmann A. A. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti // Am. J. Trop. Med. Hyg. 2014. V. 91. P. 198–205. https://doi.org/10.4269/ajtmh.13-0576
  63. Saber M., Abedi Z. Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor // J. Pest Sci. 2013. V. 86. P. 685–693. https://doi.org/10.1007/s10340-013-0528-4
  64. Saucereau Y., Valiente Moro C., Dieryckx C., Dupuy J. W., Tran F. H., Girard V., Potier P., Mavingui P. Comprehensive proteome profiling in Aedes albopictus to decipher Wolbachia-arbovirus interference phenomenon // BMC Genom. 2017. V. 18. P. 1–14. 10.1186/S12864-017-3985-Y/FIGURES/8
  65. Scaraffia P. Y., Isoe J., Murillo A., Wells M. A. Ammonia metabolism in Aedes aegypti // Insect Biochem. Mol. Biol. 2005. V. 35. P. 491–503. https://doi.org/10.1016/j.ibmb.2005.01.012
  66. Scaraffia P. Y., Wells M. A. Proline can be utilized as an energy substrate during flight of Aedes aegypti females // J. Insect Physiol.2003. V. 49. P. 591–601. https://doi.org/10.1016/S0022-1910(03)00031-3
  67. Sedaratian A., Fathipour Y., Talaei-Hassanloui R. Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera // BioControl. 2014. V. 59. P. 89–98. https://doi.org/10.1007/s10526-013-9531-1
  68. Sensi P. History of the development of rifampin // Rev. Infect. Dis. 1983. V. 5. P. 402–406.
  69. Sterkel M., Oliveira P. L. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus // Proc. Royal Soc. B: Biological Sciences. 2017. V. 284. 20162607. https://doi.org/10.1098/rspb.2016.2607
  70. Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects // Pigment Cell Res. 2002. V. 15. P. 2–9. https://doi.org/10.1034/j.1600-0749.2002.00056.x
  71. Teixeira L., Ferreira A., Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster // PLoS Biol. 2008. V. 6. e1000002. P. 2753–2763. https://doi.org/10.1371/journal.pbio.1000002
  72. Theopold U., Schmidt O., Soderhall K., Dushay M. S. Coagulation in arthropods: defence, wound closure and healing // Trends Immunol. 2004. V. 25. P. 289–294. https://doi.org/10.1016/j.it.2004.03.004
  73. Thomas P., Kenny N., Eyles D., Moreira L. A., O’Neill S. L., Asgari S. Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti // Dev. Comp. Immunol. 2011. V. 35. P. 360–365. https://doi.org/10.1016/j.dci.2010.11.007
  74. Tomilova O. G., Yaroslavtseva O. N., Ganina M. D., Tyurin M. V., Chernyak E. I., Senderskiy I. V., Noskov Y. A., Polenogova O. V., Akhanaev Y. B., Kryukov V. Y., Glupov V. V., Morozov S. V. Changes in antifungal defence systems during the intermoult period in the Colorado potato beetle // J. Insect Physiol. 2019. V. 116. P. 106–117. https://doi.org/10.1016/j.jinsphys.2019.05.003.
  75. Tsakas S., Marmaras V. J. Insect immunity and its signalling: an overview // Invertebr. Surviv. J. 2010. V. 7. P. 228–238.
  76. Varotto-Boccazzi I., Epis S., Arnoldi I., Corbett Y., Gabrieli P., Paroni M., Nodari R., Basilico N., Sacchi L., Gramiccia M., Gradoni L., Tranquillo V., Bandi C. Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans // Pharmacol. Res. 2020. V. 161. P. 1–12. 105288. https://doi.org/10.1016/j.phrs.2020.105288
  77. Voronin D. A., Bochernikov A. M., Baricheva E. M., Zakharov I. K., Kiseleva E. V. Influence of Drosophila melanogaster genotype on biological effects of endocymbiont Wolbachia (stamm wMelPop) // Tsitologiia. 2009. V. 51. P. 335–45.
  78. Walker T., Moreira L. A. Can Wolbachia be used to control malaria? // Mem. Inst. Oswaldo Cruz. 2011. V. 106. P. 212–217. https://doi.org/10.1590/S0074-02762011000900026
  79. Wang M. X., Lu Y., Cai Z. Z., Liang S., Niu Y. S., Miao Y. G. Phenol oxidase is a necessary enzyme for the silkworm molting which is regulated by molting hormone // Mol. Biol. Rep. 2013. V. 40. P. 3549–3555. https://doi.org/10.1007/s11033-012-2428-8
  80. Weinert L. A., Araujo-Jnr E. V., Ahmed M. Z., Welch J. J. The incidence of bacterial endosymbionts in terrestrial arthropods // Proc. Royal Soc. B: Biological Sciences. 2015. V. 282. 20150249. https://doi.org/10.1098/rspb.2015.0249
  81. Werren J. H., Baldo L., Clark M. E. Wolbachia: master manipulators of invertebrate biology // Nat. Rev. Microbiol. 2008. V. 6. P. 741–751. http://dx.doi.org/10.1038/nrmicro1969.
  82. Wood J. M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis // Annu. Rev. Microbiol. 2011. V. 65. P. 215–238. https://doi.org/10.1146/annurev-micro-090110-102815
  83. Wu M., Sun L. V., Vamathevan J., Riegler M., Deboy R., Brownlie J. C., McGraw E. A., Martin W., Esser C., Ahmadinejad N., Wiegand C., Madupu R., Beanan M. J., Brinkac L. M., Daugherty S. C., Durkin A. S., Kolonay J. F., Nelson W. C., Mohamoud Y., Lee P., Berry K., Young M. B., Utterback T., Weidman J., Nierman W. C., Paulsen I. T., Nelson K. E., Tettelin H., O’Neill S. L., Eisen J. A. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements // PLoS biology. 2004. V. 2. e69. https://doi.org/10.1371/journal.pbio.0020069
  84. Yang C.-H., Zhang Q., Zhu W.-Q., Shi Y., Cao H.-H., Guo L., Chu D., Lu Z., Liu T.-X. Involvement of Laccase2 in Cuticle Sclerotization of the Whitefly, Bemisia tabaci Middle East-Asia Minor 1 // Insects. 2022. V. 13. P. 1–11. 471. https://doi.org/10.3390/insects13050471
  85. Ye Y. H., Woolfit M., Rance`s E., O’Neill S. L., McGraw E. A. Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti // PLoSNegl. Trop. Dis. 2013. V. 7. e2362. https://doi.org/10.1371/journal.pntd.0002362
  86. Yuan L.-L., Chen X., Zong Q., Zhao T., Wang J.-L., Zheng Y., Zhang M., Wang Z., Brownlie J. C., Yang F., Wang Y.-F. Quantitative Proteomic Analyses of Molecular Mechanisms Associated with Cytoplasmic Incompatibility in Drosophila melanogaster Induced by Wolbachia // J. Proteome Res. 2015. V. 14. P. 3835–3847. https://doi.org/10.1021/acs.jproteome.5b00191
  87. Zélé F., Santos I., Matos M., Weill M., Vavre F., Magalhaes S. Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions // Heredity. 2020. V. 124. P. 603–617. https://doi.org/10.1038/s41437-020-0297-9
  88. Zhang Y., Cai T., Ren Z., Liu Y., Yuan M., Cai Y., Yu C., Shu R., He, Shun., Li J., Wong A. C. N., Wan H. Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature // The ISME Journal. 2021. V. 15. P. 3693–3703. https://doi.org/10.1038/s41396-021-01046-1
  89. Zug R., Hammerstein P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions // Front. Microbiol. 2015. V. 6. 1201. https://doi.org/10.3389/fmicb.2015.01201

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Morphological characters of Habrobracon hebetor imago: content of light pigment in the cuticle of Habrobracon hebetor imago of two lines, Wolbachia- and Wolbachia+ (a), sizes of male and female imago of Wolbachia- and Wolbachia+ lines (b). The results are presented as median, quartile deviations of 25–75%, as well as minimum and maximum values. Statistical analysis was performed between males and females of Wolbachia- and Wolbachia+ lines (T-test, N = 50, p ≤ 0.05); body sizes of parasitoid imago (T-test, N = 50, p ≤ 0.05). Different letters indicate significant differences between same-sex imago of different lines.

Download (30KB)
3. Fig. 2. Changes in phenoloxidase activity in whole-body homogenates of different developmental stages of Habrobracon hebetor of the Wolbachia- and Wolbachia+ lines. Results are presented as median, quartile deviations of 25–75%, and minimum and maximum values. Statistical analysis was performed between individuals of the same developmental stage of different lines: Wolbachia- and Wolbachia+ (Welch's t-test, N = 25, p ≤ 0.005). Different letters indicate significant differences between individuals of the same developmental stage of different lines.

Download (18KB)
4. Fig. 3. HPLC-FD chromatograms: a – a mixture of biogenic amine standards (1 μg/ml each); b – a sample of Habrobracon hebetor adults (males, w- line); c – a sample of Habrobracon hebetor adults (males, w+ line). Designations: DOPA – L-3,4-dihydroxyphenylalanine, TYR – L-tyrosine, OA – p-octopamine, IS – internal standard 3,4-dihydroxybenzylamine, DA – dopamine, TA – p-tyramine, 5-HT – serotonin, TRP – L-tryptophan. Excitation wavelength – 279 nm, emission – 315 nm.

Download (42KB)
5. Fig. 4. Dopamine (a) and tyrosine (b) content in whole-body homogenates of Habrobracon hebetor at different developmental stages of two strains: infected with Wolbachia (Wolbachia+) and uninfected (Wolbachia-). Results are presented as median, quartile deviations of 25–75%, and minimum and maximum values. Statistical analysis was performed between individuals of the same developmental stage of different strains: Wolbachia- and Wolbachia+ (T-test, N = 10, p ≤ 0.05). Different letters indicate significant differences between individuals of the same developmental stage of different strains.

Download (30KB)
6. Fig. 5. Total protein content in the whole body homogenate of Habrobracon hebetor at different developmental stages of two lineages Wolbachia- and Wolbachia+. Results are presented as median, quartile deviations of 25–75%, and minimum and maximum values. Statistical analysis was performed between individuals of the same developmental stage of different lineages: Wolbachia- and Wolbachia+ (T-test, N = 25, p ≤ 0.05). Different letters indicate significant differences between individuals of the same developmental stage of different lineages.

Download (16KB)
7. Fig. 6. Proline content in the whole body homogenate of Habrobracon hebetor of two strains. Results are presented as median, quartile deviations of 25–75%, and minimum and maximum values. Statistical analysis was performed between individuals of the same stage of different strains: Wolbachia- and Wolbachia+ (T-test, N = 30, p ≤0.05). Different letters indicate significant differences between individuals of the same stage of development of different strains.

Download (16KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».