Effect of Wolbachia on morphology and several aspects of host immunity of Habrobracon hebetor (Say)
- Authors: Chertkova E.A.1, Alekseev A.A.1,2, Lobanova A.P.1, Zolotareva K.A.1, Kryukova N.A.1
-
Affiliations:
- Institute of Systematics and Ecology of Animals SB RAS
- Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS
- Issue: No 1 (2025)
- Pages: 44-57
- Section: ФИЗИОЛОГИЯ ЖИВОТНЫХ И ЧЕЛОВЕКА
- URL: https://journals.rcsi.science/1026-3470/article/view/286998
- DOI: https://doi.org/10.31857/S1026347025010057
- ID: 286998
Cite item
Full Text
Abstract
Two lines of the parasitoid Habrobracon hebetor were analysed: one infected with the Wolbachia endosymbiotic bacterium and the other free of it. Differences in morphological characters were observed between the lines, specifically in the degree of cuticle melanisation and body size of adult parasitoids. The sizes of both male and female parasitoids were significantly larger in the line infected with the bacterium. The research found that Wolbachia affects the levels of dopamine, tyrosine, and phenoloxidase activity, as well as the amount of proline in the whole body homogenate during different stages of parasitoid development.
Keywords
Full Text

About the authors
E. A. Chertkova
Institute of Systematics and Ecology of Animals SB RAS
Author for correspondence.
Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091
A. A. Alekseev
Institute of Systematics and Ecology of Animals SB RAS; Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS
Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091; 3 Institutskaya str., Novosibirsk, 630090
A. P. Lobanova
Institute of Systematics and Ecology of Animals SB RAS
Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091
K. A. Zolotareva
Institute of Systematics and Ecology of Animals SB RAS
Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091
N. A. Kryukova
Institute of Systematics and Ecology of Animals SB RAS
Email: chertkaterina@yandex.ru
Russian Federation, 11 Frunze St., Novosibirsk, 630091
References
- Исмаилов В. Я., Агасьева И. С., Настасий А. С. Habrobracon hebetor Say – эффективный паразит в борьбе с яблонной плодожоркой // Садоводство и виноградарство. 2020. № 2. С. 52–57. https://doi.org/10.31676/0235-2591-2020-2-52-57
- Abràmoff M. D., Magalhães P. J., Ram S. J. Image processing with ImageJ // Biophotonics Int. 2004. V. 11. P. 36–42.
- Aderem A., Underhill D. M. Mechanisms of phagocytosis in macrophages // Annu. Rev. Immunol. 1999. V. 17. P. 593–623. https://doi.org/10.1146/annurev.immunol.17.1.593
- Ashida M., Brey P. T. Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix // Proc. Nati. Acad. Sci. 1995. V. 92. P. 10698–10702. https://doi.org/10.1073/pnas.92.23.10698
- Ashida M., Brey P. T. Recent advances in research on the insect phenoloxidase cascade. In Molecular Mechanisms of Immune Responses in Insects; Brey, P.T., Hultmark, D.L., Eds.; Chapman and Hall: London. 1997. P. 133–172.
- Aso Y., Kramer K. J., Hopkins T. L., Lookhart G. L. Characterization of haemolymph protyrosinase and a cuticular activator from Manduca sexta (L.) // Insect Biochem. 1985. V. 15. P. 9–17. https://doi.org/10.1016/0020-1790(85)90038-1
- Bagheri Z., Talebi A. A., Asgari S., Mehrabadi M. Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation // J. Invertebr. Pathol. 2019. V. 163. P. 1–7. https://doi.org/10.1016/j.jip.2019.02.005
- Barek H., Sugumaran M., Ito S., Wakamatsu K. Insect cuticular melanins are distinctly different from those of mammalian epidermal melanins // Pigment Cell & Melanoma Res. 2018. V. 31. P. 384–392. https://doi.org/10.1111/pcmr.12672
- Bates L. S., Waldren R. P., Teare I. D. Rapid determination of free proline for water-stress studies // Plant and soil. 1973. V. 39. P. 205–207. https://doi.org/10.1007/BF00018060
- Bi J., Sehgal A., Williams J. A., Wang Y.-F. Wolbachia affects sleep behavior in Drosophila melanogaster // J. Insect Physiol. 2018. V. 107. P. 81–88. https://doi.org/10.1016/j.jinsphys.2018.02.011
- Bi J., Wang Y.-F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts // Insect Sci. 2020. V. 27. P. 846–858. https://doi.org/10.1111/1744-–7917.12731
- Bian G., Joshi D., Dong Y., Lu P., Zhou G., Pan X., Xu Y., Dimopoulos G., Xi Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection // Science. 2013. V. 340. P. 748–751. https://doi.org/10.1126/science.1236192
- Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
- Becchimanzi A., Avolio M., Bostan H., Colantuono C., Cozzolino F., Mancini D., Chiusano M. L., Pucc P., Caccia S., Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans // BMC Genomics. 2020. V. 21. P. 34. https://doi.org/10.1186/s12864-019-6396-4
- Bursell E. The role of proline in energy metabolism. In Energy Metabolism in Insects; Downer R., Eds.; Springer: Boston, MA. 1981. P. 135–154. https://doi.org/10.1007/978-1-4615-9221-1_5
- Carrington L. B., Tran B. C. N., Le N. T. H., Luong T. T. H., Nguyen T. T., Nguyen P. T., Nguyen C. V. V., Nguyen H. T. C., Vu T. T., Vo L. T., Le D. T., Vu N. T., Nguyen G. T., Luu H. Q., Dang A. D., Hurst T. P., O’Neill S. L., Tran V. T., Kien D. T. H., Nguyen N. M., Wolbers M., Wills B., Simmons C. P. Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes // Proc. Natl. Acad. Sci. 2018. V. 115. P. 361–366. https://doi.org/10.1073/pnas.1715788115
- Cerenius L., Söderhäll K. Immune properties of invertebrate phenoloxidases // Dev. Comp. Immunol. 2021. V. 122. 104098. https://doi.org/10.1016/j.dci.2021.104098
- Evans O., Caragata E. P., McMeniman C. J., Woolfit M., Green D. C., Williams C. R., Franklin C. E., O’Neill S. L., McGraw E. A. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis // J. Exp. Biol. 2009. V. 212. V. 1436–1441. https://doi.org/10.1242/jeb.028951
- Fearon D. T. Seeking wisdom in innate immunity // Nature. 1997. V. 388. P. 323–324. https://doi.org/10.1038/40967
- Fenn K., Blaxter M. Wolbachia genomes: revealing the biology of parasitism and mutualism // Trends Parasitol. 2006. V. 22. P. 60–65. https://doi.org/10.1016/j.pt.2005.12.012
- Ge C., Hu J., Zhao Z., Hoffmann A. A., Ma S., Shen L., Fang J., Zhu J., Yu W., Jiang W. Phylogeny and density dynamics of Wolbachia infection of the health pest Paederus fuscipes Curtis (Coleoptera: Staphylinidae) // Insects. 2020. V. 11. 625. P. 1–11. https://doi.org/10.3390/insects11090625
- Gruntenko N. Е., Ilinsky Y. Y., Adonyeva N. V., Burdina E. V., Bykov R. A., Menshanov P. N., Rauschenbach I. Y. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions // BMC Evol. Biol. 2017. V. 17. P. 15–22. https://doi.org/10.1186/s12862-017-1104-y
- Gupta V., Vasanthakrishnan R. B., Siva-Jothy J., Monteith K. M., Brown S. P., Vale P. F. The route of infection determines Wolbachia antibacterial protection in Drosophila // Proc. R. Soc. B. 2017. Vol. 284. 20170809. http://dx.doi.org/10.1098/rspb.2017.0809
- Hall M., Scott T., Sugumaran M., Söderhäll K., Law J. H. Proenzyme of Manduca sexta phenol oxidase: purification, activation, substrate specificity of the active enzyme, and molecular cloning // Proc. Natl Acad. Sci. 1995. V. 92. P. 7764–7768. https://doi.org/10.1073/pnas.92.17.7764
- Hedges L. M., Brownlie J. C., O’Neill S. L., Johnson K. N. Wolbachia and virus protection in insects // Science. 2008. V. 322. P. 702. https://doi.org/10.1126/science.1162418
- Hilgenboecker K., Hammerstein P., Schlattmann P., Telschow A., Werren J. H. How many species are infected with Wolbachia? А statistical analysis of current data // FEMS microbiology letters. 2008. V. 281. P. 215–220. https://doi.org/10.1111/j.1574-6968.2008.01110.x
- Huang C. Y., Chou S. Y., Bartholomay L. C., Christensen B. M., Chen C. C. The use of gene silencing to study the role of dopa decarboxylase in mosquito melanization reactions // Insect Mol. Biol. 2005. V. 14. P. 237–244. https://doi.org/10.1111/j.1365-2583.2004.00552.x
- Ignatova Z., Gierasch L. M. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant // Proc. Natl. Acad. Sci. 2006. V. 103. P. 13357–13361. https://doi.org/10.1073/pnas.0603772103
- Jiménez N. E., Gerdtzen Z. P., Olivera-Nappa, Á. Salgado J. C., Conca C. A systems biology approach for studying Wolbachia metabolism reveals points of interaction with its host in the context of arboviral infection // PLoSNegl. Trop. Dis. 2019. V. 13. e0007678. https://doi.org/10.1371/journal.pntd.0007678
- Kageyama D., Narita S., Imamura T., Miyanoshita A. Detection and identification of Wolbachia endosymbionts from laboratory stocks of stored-product insect pests and their parasitoids // J. Stored Prod. Res. 2010. V. 46. P. 13–19. https://doi.org/10.1016/j.jspr.2009.07.003
- Kanost M. R., Gorman M. J. Phenoloxidases in insect immunity. In the Insect immunology; Beckage N. E., Eds.; Academic Press: San Diego. 2008. P. 69–96. https://doi.org/10.1016/B978-012373976-6.50006-9
- Karpova E. K., Bobrovskikh M. A., Deryuzhenko M. A., Shishkina O. D., Gruntenko N. E. Wolbachia Effect on Drosophila melanogaster Lipid and Carbohydrate Metabolism // Insects. 2023. V. 14. 357. P. 1–13. https://doi.org/10.3390/insects14040357
- Kempf B., Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments // Arch. Microbiol. 1998. V. 170. P. 319–330. https://doi.org/10.1007/s002030050649
- Klowden M. J. Physiological Systems in Insects. Third Edition; Academic Press: Boston, MA, USA. 2013. doi: 10.1016/B978-0-12-415819-1.00001-5.
- Kopácek P., Weise C., Götz P. The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme // Insect Biochem. Mol. Boil. 1995. V. 25. P. 1081–1091. http://dx.doi.org/10.1016/0965-1748(95)00040-2
- Kryukova N. A., Dubovskiy I. M., Chertkova E. A., Vorontsova Y. L., Slepneva I. A., Glupov V. V. The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae // J. Insect Physiol. 2011. V. 57. P. 796–800. doi: 10.1016/j.jinsphys.2011.03.008
- Kryukova N. A., Kryukov V. Y., Polenogova O. V., Chertkova Е. А., Tyurin M. V., Rotskaya, Alikina T., Kabilov M. R., Glupov V. V. The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae) // Arch. Insect Biochem. Physiol. 2023. e22053. https://doi.org/10.1002/arch.22053
- Kumar S., Christophide, G. K., Cantera R., Charles B., Han Y. S., Meister S., George Dimopoulos G., Kafatos F. C., Barillas-Mury C. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae // Proc. Natl. Acad. Sci. 2003. V. 100. P. 14139–14144. https://doi.org/10.1073/pnas.2036262100.
- Kumar T. K., Samuel D., Jayaraman G., Srimathi T., Yu C. The role of proline in the prevention of aggregation during protein folding in vitro // Biochem. Mol. Biol. Int. 1998. V. 46. P. 509–517. https://doi.org/10.1080/15216549800204032
- Lakshmana M. K., Raju T. R. An isocratic assay for norepinephrine, dopamine, and 5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat // Anal. Biochem. 1997. V. 246. P. 166–170. https://doi.org/10.1006/abio.1996.9997
- Landmann F., Foster J. M., Slatko B., Sullivan W. Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues // PLoSNegl. Trop. Dis. 2010. V. 4. e758. https://doi.org/10.1371/journal.pntd.0000758
- Landmann F., Bain O., Martin C., Uni S., Taylor M. J., Sullivan W. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes // Biol. Open. 2012. V. 1. P. 536–547. https://doi.org/10.1242/bio.2012737
- Lavine M. D., Strand M. R. Haemocytes from Pseudoplusia includens express multiple α and β integrin subunits // Insect Mol. Biol. 2003. V. 12. P. 441–452. https://doi.org/10.1046/j.1365-2583.2003.00428.x
- Leitner M., Etebari K., Asgari S. Transcriptional response of Wolbachia-transinfected Aedes aegypti mosquito cells to dengue virus at early stages of infection // J. Gen. Virol. 2022. V. 103. P. 1–9. https://doi.org/10.1099/jgv.0.001694
- Li J., Wang N., Liu Y., Qiu S. Proteomics of Nasonia vitripennis and the effects of native Wolbachia infection on N. vitripennis // Peer J. 2018. V. 6. e4905. https://doi.org/10.7717/peerj.4905
- Ling E., Yu X.-Q. Prophenoloxidase binds to the surface of hemocytes and is involved in hemocyte melanization in Manduca sexta // Insect Biochem. Mol. Biol. 2005. V. 35. P. 1356–1366. https://doi.org/10.1016/j.ibmb.2005.08.007
- Marieshwari B. N., Bhuvaragavan S., Sruthi K., Mullainadhan P., Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond // J. Comp. Physiol. B. 2023. V. 193. P. 1–23. https://doi.org/10.1007/s00360-022-01468-z
- Marmaras V. J., Lampropoulou M. Regulators and signalling in insect haemocyte immunity // Cell. Signal. 2009. V. 21. P. 186–195. https://doi.org/10.1016/j.cellsig.2008.08.014
- Ming Q. L., Shen J. F., Cheng C., Liu C. M., Feng Z. J. Wolbachia infection dynamics in Tribolium confusum (Coleoptera: Tenebrionidae) and their effects on host mating behavior and reproduction // J. Econ. Entomol. 2015. V. 108. P. 1408–1415. https://doi.org/10.1093/jee/tov053
- Moreira L. A., Iturbe-Ormaetxe I., Jeffery J. A., Lu G., Pyke A. T., Hedges L. M., Rocha B. C., Hall-Mendelin S., Day A., Riegler M., Hugo L. E., Johnson K. N., Kay B. H., McGraw E. A., van den Hurk A. F., Ryan P. A., O’Neill S. L. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium // Cell. 2009. V. 139. P. 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042
- Moreira L. A., Ye Y. H., Turner K., Eyles D. W., McGraw E. A., O’Neill S. L. The w MelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti // Parasites & vectors. 2011. V. 4. P. 1–5. https://doi.org/10.1186/1756-3305-4-28
- Moses S., Sinner T., Zaprasis A., Stoveken N., Hoffmann T., Belitsky B. R., Sonenshein A. L., Bremer E. Proline utilization by Bacillus subtilis: uptake and catabolism // J. Bacteriol. 2012. V. 194. P. 745–758. https://doi.org/10.1128/jb.06380-11
- Natarajan S. K., Zhu W., Liang X., Zhang L., Demers A. J., Zimmerman M. C., Simpson M. A., Becker D. F. Proline dehydrogenase is essential for proline protection against hydrogen peroxide-induced cell death // Free. Radic. Biol. Med. 2012. V. 53. P. 1181–1191. https://doi.org/10.1016/j.freeradbiomed.2012.07.002
- Neckameyer W. S., Leal S. M. Biogenic amines as circulating hormones in insects // Hormones, brain and behavior. 2002. P. 141–165. https://doi.org/10.1016/B978-012532104-4/50040-8
- Okayama K., Katsuki M., Sumida Y., Okada K. Costs and benefits of symbiosis between a bean beetle and Wolbachia // Anim.Behav. 2016. V. 119. P. 19–26. https://doi.org/10.1016/j.anbehav.2016.07.004
- Pan X., Zhou G., Wu J., Bian G., Lu P., Raikhel A. S., Xi Z. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti // Proc. Natl. Acad. Sci. 2012. V. 109. E23–E31. https://doi.org/10.1073/pnas.1116932108
- Parkhitko A. A., Ramesh D., Wang L., Leshchiner D., Filine E., Binari R., Olsen A. L., Asara J. M., Cracan V., Rabinowitz J. D., Brockmann A., Perrimon N. Downregulation of the tyrosine degradation pathway extends Drosophila lifespan // Elife. 2020. V. 9. e58053. https://doi.org/10.7554/eLife.58053
- Pietri J. E., De Bruhl H., Sullivan W. The rich somatic life of Wolbachia // Microbiology open. 2016. V. 5. P. 923–936. https://doi.org/10.1002/mbo3.390
- Pimentel A. C., Cesar C. S., Martins M., Cogni R. The antiviral effects of the symbiont bacteria Wolbachia in insects // Front. Immunol. 2021. V. 11. 626329. https://doi.org/10.3389/fimmu.2020.626329
- Rafiee-Dastjerdi H., Hejazi M. J., Nouri G. G., Saber M. Toxicity of some biorational and conventional insecticides to cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) and its ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae) // J. Entomol. Soc. Iran. 2008. V. 28. P. 27–37.
- Rancès E., Ye Y. H., Woolfit M., McGraw E. A., O’Neill S. L. The relative importance of innate immune priming in Wolbachia-mediated dengue interference // PLoSPathog. 2012. V. 8. e1002548. https://doi.org/10.1371/journal.ppat.1002548
- Ross P. A., Endersby N. M., Yeap H. L., Hoffmann A. A. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti // Am. J. Trop. Med. Hyg. 2014. V. 91. P. 198–205. https://doi.org/10.4269/ajtmh.13-0576
- Saber M., Abedi Z. Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor // J. Pest Sci. 2013. V. 86. P. 685–693. https://doi.org/10.1007/s10340-013-0528-4
- Saucereau Y., Valiente Moro C., Dieryckx C., Dupuy J. W., Tran F. H., Girard V., Potier P., Mavingui P. Comprehensive proteome profiling in Aedes albopictus to decipher Wolbachia-arbovirus interference phenomenon // BMC Genom. 2017. V. 18. P. 1–14. 10.1186/S12864-017-3985-Y/FIGURES/8
- Scaraffia P. Y., Isoe J., Murillo A., Wells M. A. Ammonia metabolism in Aedes aegypti // Insect Biochem. Mol. Biol. 2005. V. 35. P. 491–503. https://doi.org/10.1016/j.ibmb.2005.01.012
- Scaraffia P. Y., Wells M. A. Proline can be utilized as an energy substrate during flight of Aedes aegypti females // J. Insect Physiol.2003. V. 49. P. 591–601. https://doi.org/10.1016/S0022-1910(03)00031-3
- Sedaratian A., Fathipour Y., Talaei-Hassanloui R. Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera // BioControl. 2014. V. 59. P. 89–98. https://doi.org/10.1007/s10526-013-9531-1
- Sensi P. History of the development of rifampin // Rev. Infect. Dis. 1983. V. 5. P. 402–406.
- Sterkel M., Oliveira P. L. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus // Proc. Royal Soc. B: Biological Sciences. 2017. V. 284. 20162607. https://doi.org/10.1098/rspb.2016.2607
- Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects // Pigment Cell Res. 2002. V. 15. P. 2–9. https://doi.org/10.1034/j.1600-0749.2002.00056.x
- Teixeira L., Ferreira A., Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster // PLoS Biol. 2008. V. 6. e1000002. P. 2753–2763. https://doi.org/10.1371/journal.pbio.1000002
- Theopold U., Schmidt O., Soderhall K., Dushay M. S. Coagulation in arthropods: defence, wound closure and healing // Trends Immunol. 2004. V. 25. P. 289–294. https://doi.org/10.1016/j.it.2004.03.004
- Thomas P., Kenny N., Eyles D., Moreira L. A., O’Neill S. L., Asgari S. Infection with the wMel and wMelPop strains of Wolbachia leads to higher levels of melanization in the hemolymph of Drosophila melanogaster, Drosophila simulans and Aedes aegypti // Dev. Comp. Immunol. 2011. V. 35. P. 360–365. https://doi.org/10.1016/j.dci.2010.11.007
- Tomilova O. G., Yaroslavtseva O. N., Ganina M. D., Tyurin M. V., Chernyak E. I., Senderskiy I. V., Noskov Y. A., Polenogova O. V., Akhanaev Y. B., Kryukov V. Y., Glupov V. V., Morozov S. V. Changes in antifungal defence systems during the intermoult period in the Colorado potato beetle // J. Insect Physiol. 2019. V. 116. P. 106–117. https://doi.org/10.1016/j.jinsphys.2019.05.003.
- Tsakas S., Marmaras V. J. Insect immunity and its signalling: an overview // Invertebr. Surviv. J. 2010. V. 7. P. 228–238.
- Varotto-Boccazzi I., Epis S., Arnoldi I., Corbett Y., Gabrieli P., Paroni M., Nodari R., Basilico N., Sacchi L., Gramiccia M., Gradoni L., Tranquillo V., Bandi C. Boosting immunity to treat parasitic infections: Asaia bacteria expressing a protein from Wolbachia determine M1 macrophage activation and killing of Leishmania protozoans // Pharmacol. Res. 2020. V. 161. P. 1–12. 105288. https://doi.org/10.1016/j.phrs.2020.105288
- Voronin D. A., Bochernikov A. M., Baricheva E. M., Zakharov I. K., Kiseleva E. V. Influence of Drosophila melanogaster genotype on biological effects of endocymbiont Wolbachia (stamm wMelPop) // Tsitologiia. 2009. V. 51. P. 335–45.
- Walker T., Moreira L. A. Can Wolbachia be used to control malaria? // Mem. Inst. Oswaldo Cruz. 2011. V. 106. P. 212–217. https://doi.org/10.1590/S0074-02762011000900026
- Wang M. X., Lu Y., Cai Z. Z., Liang S., Niu Y. S., Miao Y. G. Phenol oxidase is a necessary enzyme for the silkworm molting which is regulated by molting hormone // Mol. Biol. Rep. 2013. V. 40. P. 3549–3555. https://doi.org/10.1007/s11033-012-2428-8
- Weinert L. A., Araujo-Jnr E. V., Ahmed M. Z., Welch J. J. The incidence of bacterial endosymbionts in terrestrial arthropods // Proc. Royal Soc. B: Biological Sciences. 2015. V. 282. 20150249. https://doi.org/10.1098/rspb.2015.0249
- Werren J. H., Baldo L., Clark M. E. Wolbachia: master manipulators of invertebrate biology // Nat. Rev. Microbiol. 2008. V. 6. P. 741–751. http://dx.doi.org/10.1038/nrmicro1969.
- Wood J. M. Bacterial osmoregulation: a paradigm for the study of cellular homeostasis // Annu. Rev. Microbiol. 2011. V. 65. P. 215–238. https://doi.org/10.1146/annurev-micro-090110-102815
- Wu M., Sun L. V., Vamathevan J., Riegler M., Deboy R., Brownlie J. C., McGraw E. A., Martin W., Esser C., Ahmadinejad N., Wiegand C., Madupu R., Beanan M. J., Brinkac L. M., Daugherty S. C., Durkin A. S., Kolonay J. F., Nelson W. C., Mohamoud Y., Lee P., Berry K., Young M. B., Utterback T., Weidman J., Nierman W. C., Paulsen I. T., Nelson K. E., Tettelin H., O’Neill S. L., Eisen J. A. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements // PLoS biology. 2004. V. 2. e69. https://doi.org/10.1371/journal.pbio.0020069
- Yang C.-H., Zhang Q., Zhu W.-Q., Shi Y., Cao H.-H., Guo L., Chu D., Lu Z., Liu T.-X. Involvement of Laccase2 in Cuticle Sclerotization of the Whitefly, Bemisia tabaci Middle East-Asia Minor 1 // Insects. 2022. V. 13. P. 1–11. 471. https://doi.org/10.3390/insects13050471
- Ye Y. H., Woolfit M., Rance`s E., O’Neill S. L., McGraw E. A. Wolbachia-Associated Bacterial Protection in the Mosquito Aedes aegypti // PLoSNegl. Trop. Dis. 2013. V. 7. e2362. https://doi.org/10.1371/journal.pntd.0002362
- Yuan L.-L., Chen X., Zong Q., Zhao T., Wang J.-L., Zheng Y., Zhang M., Wang Z., Brownlie J. C., Yang F., Wang Y.-F. Quantitative Proteomic Analyses of Molecular Mechanisms Associated with Cytoplasmic Incompatibility in Drosophila melanogaster Induced by Wolbachia // J. Proteome Res. 2015. V. 14. P. 3835–3847. https://doi.org/10.1021/acs.jproteome.5b00191
- Zélé F., Santos I., Matos M., Weill M., Vavre F., Magalhaes S. Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions // Heredity. 2020. V. 124. P. 603–617. https://doi.org/10.1038/s41437-020-0297-9
- Zhang Y., Cai T., Ren Z., Liu Y., Yuan M., Cai Y., Yu C., Shu R., He, Shun., Li J., Wong A. C. N., Wan H. Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature // The ISME Journal. 2021. V. 15. P. 3693–3703. https://doi.org/10.1038/s41396-021-01046-1
- Zug R., Hammerstein P. Wolbachia and the insect immune system: what reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions // Front. Microbiol. 2015. V. 6. 1201. https://doi.org/10.3389/fmicb.2015.01201
Supplementary files
