Scutellaria lateriflora root’s phenolic segment of metabolome
- Authors: Elkin Y.N.1, Manyakhin A.Y.2,3,4
-
Affiliations:
- Pacific Institute of Bioorganic Chemistry named after G. B. Elyakov, Far Eastern Branch of the Russian Academy of Sciences
- Federal Research Center for Biodiversity of Terrestrial Biota of East Asia, Far Eastern Branch of the Russian Academy of Sciences
- Vladivostok State University
- Ningbo Excare Pharm Inc.
- Issue: No 1 (2025)
- Pages: 24-34
- Section: BIOCHEMISTRY
- URL: https://journals.rcsi.science/1026-3470/article/view/286993
- DOI: https://doi.org/10.31857/S1026347025010033
- ID: 286993
Cite item
Full Text
Abstract
The article presents the results of studying the metabolites of roots and hairy roots of S. lateriflora using liquid chromatography–mass spectrometry. It has been established that the main share of polyphenolic metabolites in roots and hairy roots is phenylethanoids and flavonoids containing up to two and up to four methoxyl groups, respectively. Among flavonoids, wogonin, 6-OMe wogonin and their glycosides are most abundant in the roots of the plant. Phenylethanoids are represented by a series of caffeoyl rutinosides, hydroxytyrosol, with a content parity with flavonoids. In addition to polyphenols, a significant content of sucrose was found in the root system.
Full Text

About the authors
Yu. N. Elkin
Pacific Institute of Bioorganic Chemistry named after G. B. Elyakov, Far Eastern Branch of the Russian Academy of Sciences
Email: mau84@mail.ru
Russian Federation, рrospekt Stoletiya Vladivostokа, 159, Vladivostok, 690022
A. Yu. Manyakhin
Federal Research Center for Biodiversity of Terrestrial Biota of East Asia, Far Eastern Branch of the Russian Academy of Sciences; Vladivostok State University; Ningbo Excare Pharm Inc.
Author for correspondence.
Email: mau84@mail.ru
Russian Federation, рrospekt Stoletiya Vladivostokа, 159/1, Vladivostok, 690022; ul. Gogolya, 41, Vladivostok, 690014; Xizishan Rd, 172, Chunxiao, Beilun, Ningbo, 315830 China
References
- Bolton J. L., Dunlap T. L., Dietz B. M. Formation and biological targets of botanical o-quinones // Food Chem. Tox. 2018. V. 120. P. 700–707. https://doi.org/10.1016/j.fct.2018.07.050
- Chen S. Genetic and phylogenetic analysis of the complete genome for the herbal medicine plant of Scutellaria baicalensis from China // Mit. DNA B. 2019. V. 4. P. 1683–1685. https://doi.org/10.1080/23802359.2019.1605859
- Costine B., Zhang M. Z., Chhajed S., Pearson B., Chen S. X., Nadakuduti S. S. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties // Sci. Rep. 2022. V. 12. P. 13201. https://doi.org/10.1038/s41598-022-17586-367-1.
- Cui M. Y., Lu A. R., Li J. X., Liu J., Fang Y. M., Pei T. L., Zhong X., Wei Y. K., Kong Y., Qiu W. Q., Hu Y. H., Yang J., Chen X. Y., Martin C., Zhao Q. Two types of O-methyltransferases are involved in biosynthesis of anticancer methoxylated 4`-deoxyflavones in Scutellaria baicalensis Georgi // Plant Biotech. J. 2021. V. 20. P. 1–14. https://doi.org/10.1111/pbi.13700
- Elkin Y. N., Kulesh N. I., Shishmarev V. M., Kargin V. M., Manyakhin A. Y. Scutellaria baicalensis: the end of the flavone biosynthesis pathway // Acta Biol. Crac. bot. 2022. V. 64. P. 39–43. https://doi.org/10.24425/abcsb.2021.136704
- Elkin Y. N., Kulesh N. I., Stepanova A. Y., Solovieva A. I., Kargin V. M., Manyakhin A. Y. Methylated flavones of the hairy root culture Scutellaria baicalensis // J. Plant Phys. 2018. V. 231. P. 277–280. https://doi.org/10.1016/j.jplph.2018.10.009
- Elkin Y. N., Stepanova A. Y., Pshenichnyuk S. A., Manyakhin A. Y. Root specific methylated flavones protect of Scutellaria baicalensis // Khim. Rast. Syr’ja. 2023. № 4. P. 241–248. https://doi.org/10.14258/jcprm.20230411877
- Islam M. N., Downey F., Ng C. K. Y. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS // Metabolomics. 2011. V. 7. P. 446–453. https://doi.org/10.1007/s11306-010-0269-9
- Kim J. K., Kim Y. S., Kim Y., Uddin M. R., Kim Y. B., Kim H. H., Park S. U. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora // World J. Microbio. Biotech. 2014. V. 30. P. 887–892. https://doi.org/10.1007/s11274-013-1498-7
- Li J., Wang Y. H., Smillie T. J., Khan I. A. Identification of phenolic compounds from Scutellaria lateriflora by liquid chromatography with ultraviolet photodiode array and electrospray ionization tandem mass spectrometry // J. Biomed. Anal. 2012. V. 63. P. 120–127. https://doi.org/10.1016/j.jpba.2012.01.027
- Li L., Kitazawa H., Zhang X., Zhang L., Sun Y., Wang X., Liu Y., Guo S., Yu S. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus) // Food Chem. 2021. V. 340. P. 127833. https://doi.org/10.1016/j.foodchem.2020.127833
- Modelli A., Pshenichnyuk S. A. Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways // Phys. Chem. Chem. Phys. 2013. V. 15. P. 1588–1600. https://doi.org/10.1039/C2CP43379F
- Pei T., Yan M., Huang Y., Wei Y., Martin C., Zhao Q. Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis // Front. Plant Sci. 2022. V. 13. P. 866282. https://doi.org/10.3389/fpls.2022.866282
- Pshenichnyuk S. A., Elkin Y. N., Kulesh N. I., Lazneva E. F., Komolov A. S. Low–energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids // Phys. Chem. Chem. Phys. 2015. V. 17. P. 16805–16812. https://doi.org/10.1039/C5CP02890F
- Qiao X., Li R., Song W., Miao W. J., Liu J., Chen H. B., Guo D. A., Ye M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering // J. Chrom. A. 2016. V. 1441. P. 83–95. https://doi.org/10.1016/j.chroma.2016.02.079
- Sherman S. H., Nirmal J. Current status of research on medicinal plant Scutellaria lateriflora: A review // J. Med. Act. Plants. 2022. V. 11. P. 22–38. https://doi.org/10.7275/shxv-wb39
- Stepanova A. Y., Solov’eva A. I., Malunova M. V., Salamaikina S. A., Panov Y. M., Lelishentsev A. A. Hairy roots Scutellaria spp. (Lamiaceae) as promising producers of antiviral flavones // Molecules. 2021. V. 26. P. 3927. https://doi.org/10.3390/molecules26133927
- Takagi S., Yamaki M., Inoue K. Studies on the water-soluble constituents of the roots of Scutellaria baicalensis Georgi (Wogon) // Yakugaku Zasshi. 1980. V. 100. Iss. 12. P. 1220–1224. https://doi.org/10.1248/yakushi1947.100.12_1220
- Tsai P. J., Huang W. C., Hsieh M. C., Sung P. J., Kuo Y. H., Wu W. H. Flavones isolated from Scutellariae radix suppress propionibacterium acnes-induced cytokine production in vitro and in vivo // Molecules. 2016. V. 21. P. 15. https://doi.org/10.3390/molecules21010015
- Wang Z. L., Wang S., Kuang Y., Hu Z. M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis // Pharm. Biol. 2018. V. 56. P. 465–484. https://doi.org/10.1080/13880209.2018.1492620
- Wilczańska-Barska A., Królicka A., Głód D., Majdan M., Kawiak A., Krauze-Baranowska M. Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation // Biotech. Lett. 2012. V. 34. P. 1757–1763. https://doi.org/10.1007/s10529-012-0963-y
- Xia H., Attygalle A. B. Effect of electrospray ionization source conditions on the tautomer distribution of deprotonated p-hydroxybenzoic acid in the gas phase // Anal. Chem. 2016.V. 88. P. 6035–6043. https://doi.org/10.1021/acs.analchem.6b01230
- Zhao Q., Cui M. Y., Levsh O., Yang D., Liu J., Li J., Hill L., Yang L., Hu Y., Weng J. K., Chen X. Y., Martin C. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4’-deoxyflavones in Scutellaria baicalensis // Mol. Plant. 2018. V. 11. P. 135–148. http://dx.doi.org/10.1016/j.molp.2017.08.009
- Zhao Q., Zhang Y., Wang G., Hill L., Weng J. K., Chen X. Y., Xue H., Martin C. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis // Sci. Adv. 2016. V. 2. P. e1501780. https://doi.org/10.1126/sciadv.1501780
- Zhang Z., Lian X. Y., Li S., Stringer J. L. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora) // Phytomed. 2009. V. 16. P. 485–493. https://doi.org/10.1016/j.phymed.2008.07.011
Supplementary files
