Lipid-correcting and antioxidant effects of the lipid complex from the red marine algae Ahnfeltia tobuchiensis under the conditions of a high-fat diet

Cover Page

Cite item

Full Text

Abstract

The influence of the lipid complex isolated from the thallus of the red marine algae Ahnfeltia tobuchiensis (LCA) on the metabolic parameters of the blood and liver of rats under a high-fat diet was studied. It was shown that the administration of LCA had a pronounced lipid-correcting and antioxidant effect, which was superior to that of the reference preparation “Omega 3-6-9” in terms of its ability to restore lipid metabolism, the ratio of lipoprotein fractions and the indices of the endogenous antioxidant protection system, as so as prevent the development of hepatosis. The lipid-correcting and anti-oxidant effect of LCA is specified by the action of n-3 polyunsaturated fatty acids, in particular eicosapentaenoic acid, which are the part of the structure of phospholipids and glycolipids of marine origin, which make up the main part of the studied lipid complex.

Full Text

Restricted Access

About the authors

V. G. Sprygin

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

Email: vgs2006@mail.ru
Russian Federation, Vladivostok, 690041

Н. Ф. Kushnerova

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

Email: vgs2006@mail.ru
Russian Federation, Vladivostok, 690041

S. E. Fomenko

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

Email: vgs2006@mail.ru
Russian Federation, Vladivostok, 690041

E. S. Drugova

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

Email: vgs2006@mail.ru
Russian Federation, Vladivostok, 690041

L. N. Lesnikova

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

Email: vgs2006@mail.ru
Russian Federation, Vladivostok, 690041

V. Yu. Merzlyakov

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

Author for correspondence.
Email: vgs2006@mail.ru
Russian Federation, Vladivostok, 690041

References

  1. Дядык А.И., Куглер Т.Е., Сулиман Ю.В., Зборовский С.Р., Здиховская И.И. Побочные эффекты статинов: механизмы развития, диагностика, профилактика и лечение // Архивъ внутренней медицины. 2018. Т. 8. № 4. С. 266–276. https://doi.org/10.20514/22266704-2018-8-4-266-276
  2. Карпищенко А.И. Медицинские лабораторные технологии: Руководство по клинической лабораторной диагностике: В 2 т. / В.В. Алексеев, А.Н. Алипов, В.А. Андреев и др. Том 2. 3-е изд., доп. и перераб. М.: ООО ГЭОТАР-Медиа, 2013. 792 с.
  3. Кривошапко О.Н., Попов А.М., Артюков А.А., Костецкий Э.Я. Особенности корригирующего действия полярных липидов и биоантиоксидантов из морских гидробионтов при нарушениях липидного и углеводного обмена // Биомедицинская химия. 2012. Т. 58. № 2. С. 189–198. http://dx.doi.org/10.18097/PBMC20125802189
  4. Кушнерова Н.Ф. Коррекция липидного состава плазмы крови и мембран эритроцитов при экспериментальной дислипидемии липидным комплексом из экстракта бурой водоросли Saccharina japonika // Здоровье. Медицинская экология. Наука. 2018. Т. 75. № 3. С. 65–73. https://doi.org/10.5281/zenodo.1488050
  5. Новгородцева Т.П., Сомова Л.М., Гвозденко Т.А., Караман Ю.К., Бивалькевич Н.В. Алиментарная дислипидемия: экспериментально-морфологические аспекты. Владивосток: Дальневосточный федеральный университет, 2011. 168 с.
  6. Подкорытова А.В., Игнатова Т.А., Бурова Н.В., Усов А.И. Перспективные направления рационального использования промысловых красных водорослей рода Ahnfeltia, добываемых в прибрежных зонах морей России // Труды ВНИРО. 2019. Т. 176. С. 14–26.
  7. Рыженков В.Е., Макаров В.Г., Ремезова О.В., Макарова М.Н. Методические рекомендации по изучению гиполипидемического и антисклеротического действия лекарственных средств // Руководство по проведению доклинических исследований лекарственных средств. Ч. 1. М.: Гриф и К, 2012. С. 445–452.
  8. Фисенко В.П. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Ремедиум, 2000. 398 с.
  9. Фоменко С.Е., Кушнерова Н.Ф., Спрыгин В.Г., Другова Е.С., Лесникова Л.Н., Мерзляков В.Ю., Момот Т.В. Сравнительное исследование липидного состава, содержания полифенолов и антирадикальной активности некоторых представителей морских водорослей // Физиология растений. 2019. Т. 66. № 6. С. 452–460. https://doi.org/10.1134/S0015330319050051
  10. Хотимченко С.В., Гусарова И.С. Красные водоросли залива Петра Великого как источник арахидоновой и эйкозапентаеновой кислот // Биология моря. 2004. Т. 30. № 3. С. 215–218. https://doi.org/10.1023/B:RUMB.0000033953.67105.6b
  11. Amenta J.S. A rapid chemical method for quantification of lipids separated by thin-layer chromatography // J. Lipid. Res. 1964. V. 5. P. 270–272. https://doi.org/10.1016/S0022-2275(20)40251-2
  12. Balk E.M., Lichtenstein A.H., Chung M., Kupelnick B., Chew P., Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review // Atherosclerosis. 2006. V. 189. № 1. P. 19–30. https://doi.org/10.1016/j.atherosclerosis.2006.02.012
  13. Bartosz G., Janaszewska A., Ertel D., Bartosz M. Simple determination of peroxyl radical-trapping capacity // Biochem. Mol. Biol. Int. 1998. V. 46. № 3. P. 519–528. https://doi.org/10.1080/15216549800204042
  14. Bernstein A.M., Ding E.L., Willett W.C., Rimm E.B. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease // J. Nutr. 2012. V. 142. № 1. P. 99–104. https://doi.org/10.3945/jn.111.148973
  15. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. V. 37. № 8. P. 911–917. https://doi.org/10.1139/o59-099
  16. Bodur A., İnce İ., Kahraman C., Abidin İ., Aydin-Abidin S., Alver A. Effect of a high sucrose and high fat diet in BDNF (+/-) mice on oxidative stress markers in adipose tissues // Arch. Biochem. Biophys. 2019. V. 665. P. 46–56. https://doi.org/10.1016/j.abb.2019.02.004
  17. Bradford M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding // Anal. Biochem. 1976. V. 72. № 1–2. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  18. Buege J.A., Aust S.D. Microsomal lipid peroxidation // Methods Enzymol. 1978. V. 52. P. 302–310. https://doi.org/10.1016/S0076-6879(78)52032-6
  19. Burillo E., Martín-Fuentes P., Mateo-Gallego R., Baila-Rueda L., Cenarro A., Ros E., Civeira F. Omega-3 Fatty Acids and HDL. How Do They Work in the Prevention of Cardiovascular Disease? // Curr. Mol. Pharmacol. 2012. V. 10. P. 432–441. http://dx.doi.org/10.2174/157016112800812845
  20. Burk R.F., Lawrence R.A., Lane J.M. Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration: Effect of selenium deficiency // J. Clin. Investig. 1980. V. 65. № 5. P. 1024–1031. https://doi.org/10.1172/JCI109754
  21. Chen J., Jiang Y., Ma K.Y., Chen F., Chen Z.Y. Microalga decreases plasma cholesterol by down-regulation of intestinal NPC1L1, hepatic LDL receptor, and HMG-CoA reductase // J. Agric. Food. Chem. 2011. V. 59. № 12. P. 6790–6797. https://doi.org/10.1021/jf200757h
  22. Connor W.E., Connor S.L. Dietary treatment of familial hypercholesterolemia // Arteriosclerosis. 1989. V. 9. № 1 Suppl. P. I91–105.
  23. Folch J., Less M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues // J. Biol. Chem. 1957. V. 226. № 1. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
  24. Francisqueti F., Chiaverini L., Carolo Dos Santos K., Minatel I.O., Ronchi C., Ferron A., Ferreira A., Correa C. The role of oxidative stress on the pathophysiology of metabolic syndrome // Rev. Assoc. Med. Bras. 2017. V. 63. P. 85–91. https://dx.doi.org/10.1590/1806-9282.63.01.85
  25. Garrel C., Alessandri J.-M., Guesnet P., Al-Gubory K.H. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development // Int. J. Biochem. Cell Biol. 2012. V. 44. № 1. P. 123–131. https://doi.org/10.1016/j.biocel.2011.10.007
  26. Ghezelbash B., Shahrokhi N., Khaksari M., Ghaderi-Pakdel F., Asadikaram G. Hepatoprotective effects of Shilajit on high fat-diet induced non-alcoholic fatty liver disease (NAFLD) in rats // Horm. Mol. Biol. Clin. Investig. 2020. V. 41. № 1. Р. 20190040. https://doi.org/10.1515/hmbci-2019-0040
  27. Goldberg D.M., Spooner R.J. Assay of Glutathione Reductase // Method. Enzymat. Anal. – Deerfiled Beach: Verlog Chemie, 1983. V. 3. P. 258–265.
  28. Hirotani Y., Ozaki N., Tsuji Y., Urashima Y., Myotoku M. Effects of eicosapentaenoic acid on hepatic dyslipidemia and oxidative stress in high fat diet-induced steatosis // Int. J. Food. Sci. Nutr. 2015. V. 66. № 5. P. 569–573. https://doi.org/10.3109/09637486.2015.1042848
  29. Jimoh A., Tanko Y., Ahmed A., Mohammed A., Ayo J.O. Resveratrol prevents high-fat diet-induced obesity and oxidative stress in rabbits // Pathophysiology. 2018. V. 25. № 4. P. 359–364. https://doi.org/10.1016/j.pathophys.2018.07.003
  30. Johnson M., Bradford C. Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases // J. Glycomics Lipidomics. 2014. V. 4. P. 2153–0637. 1000123. http://dx.doi.org/10.4172/2153-0637.1000123
  31. Komprda T., Škultéty O., Křížková S., Zorníková G., Rozíková V., Krobot R. Effect of dietary Schizochytrium microalga oil and fish oil on plasma cholesterol level in rats // J. Anim. Physiol. Anim. Nutr. (Berl.). 2015. V. 99. № 2. P. 308–316. https://doi.org/10.1111/jpn.12221
  32. Liu L., Hu Q., Wu H., Xue Y., Cai L., Fang M., Liu Z., Yao P., Wu Y., Gong Z. Protective role of n6/n3 PUFA supplementation with varying DHA/EPA ratios against atherosclerosis in mice // J. Nutr. Biochem. 2016. V. 32. P. 171–180. https://doi.org/10.1016/j.jnutbio.2016.02.010
  33. Mišurcová L., Ambrožová J., Samek D. Seaweed lipids as nutraceuticals // Adv. Food. Nutr. Res. 2011. V. 64. P. 339–355. https://doi.org/10.1016/B978-0-12-387669-0.00027-2
  34. Murthy S., Albright E., Mathur S.N., Field F.J. Modification of CaCo-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: effect on cholesterol metabolism // J. Lipid. Res. 1988. V. 29. № 6. P. 773–780. https://doi.org/10.1016/S0022-2275(20)38490-X
  35. Noeman S.A., Hamooda H.E., Baalash A.A. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats // Diabetol. Metab. Syndr. 2011. V. 3. № 1. P. 17–24. https://doi.org/10.1186/1758-5996-3-17
  36. Öngün Yılmaz H. Hyperlipidemia and Nutrition // Türkiye Sağlık Bilimleri ve Araştırmaları Dergisi. 2018. V. 2. № 1. P. 72–82.
  37. Paoletti F., Aldinucci D., Mocali A., Caparrini A. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts // Anal. Biochem. 1986. V. 154. № 2. P. 536–541. https://doi.org/10.1016/0003-2697(86)90026-6
  38. Patten A.R., Brocardo P.S., Christie B.R. Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure // J. Nutr. Biochem. 2013. V. 24. № 5. P. 760–769. https://doi.org/10.1016/j.jnutbio.2012.04.003
  39. Ramji D.P. Polyunsaturated Fatty Acids and Atherosclerosis: Insights from Pre-Clinical Studies // Eur. J. Lipid. Sci. Tech. 2019. V. 121. № 1. P. 1800029. https://doi.org/10.1002/ejlt.201800029
  40. Refaat B., Abdelghany A.H., Ahmad J., Abdalla O.M., Elshopakey G.E., Idris S., El-Boshy M. Vitamin D(3) enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat // Biofactors. 2022. V. 48. № 2. P. 498–513. https://doi.org/10.1002/biof.1804
  41. Richard D., Kefi K., Barbe U., Bausero P., Visioli F. Polyunsaturated fatty acids as antioxidants // Pharmacol. Res. 2008. V. 57. № 6. P. 451–455. https://doi.org/10.1016/j.phrs.2008.05.002
  42. Shibabaw T. Omega-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease // Mol. Cell. Biochem. 2021. V. 476. № 2. P. 993–1003. https://doi.org/10.1007/s11010-020-03965-7
  43. Sirichaiwetchakoon K., Lowe G.M., Kupittayanant S., Churproong S., Eumkeb G. Pluchea indica (L.) Less. Tea Ameliorates Hyperglycemia, Dyslipidemia, and Obesity in High Fat Diet-Fed Mice // Evid. Based Complement. Alternat. Med. 2020. V. 2020. P. 8746137. https://doi.org/10.1155/2020/8746137
  44. Susanto E., Fahmi A.S., Hosokawa M., Miyashita K. Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds // Mar. Drugs. 2019. V. 17. № 11. P. 630–651. https://doi.org/10.3390/md17110630
  45. Svetashev V.I., Vaskovsky V.E. A simplified technique for thin-layer microchromatography of lipids // J. Chromatogr. 1972. V. 67. № 2. P. 376–3788. https://doi.org/10.1016/S0021-9673(01)91245-2
  46. Torres N., Guevara-Cruz M., Velázquez-Villegas L.A., Tovar A.R. Nutrition and Atherosclerosis // Arch Med Res. 2015. V. 46. № 5. P. 408–426. https://doi.org/10.1016/j.arcmed.2015.05.010
  47. Yanagita T., Nagao K. Functional lipids and the prevention of the metabolic syndrome // Asia. Pac. J. Clin. Nutr. 2008. V. 17 Suppl 1. № 1. P. 189–191.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The content of lipid fractions (mmol/l) in the blood plasma of rats under high-fat diet (HFD) with the administration of a lipid complex from A. tobuchiensis and the Omega drug. The differences are significant (p < 0.05) compared with the control – *, with the HJD group – #, with the HZD + ahnfelcia group – +

Download (173KB)
3. Fig. 2. The content of neutral lipid fractions (% of the sum of fractions) in the liver of rats under conditions of a high-fat diet (HFD) with the introduction of a lipid complex from A. tobuchiensis and the Omega drug. The differences are significant (p < 0.05) compared with the control – *, with the HJD group – #, with the HZD + Ahnfeltsiya group – +

Download (191KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies