Ecological Niches Modelling of the Most Dangerous Invasive Species Top-100 in Russia: Testing the Hypothesis of Conservatism of Ecological Niches

Cover Page

Cite item

Full Text

Abstract

The concept of ecological niches plays an important role in predicting the potential distribution of species in the invasive range and developing invasion management strategies. To test the hypothesis, we used models of ecological niches of the 100 most dangerous invasive species of Russia. Our results show that invasive niches occupy a position similar to native niches in the space of predictor variables and there is a very limited expansion of niches. The results generally support the niche conservatism hypothesis. We also found important exceptional cases of rejection of this hypothesis. The key mechanisms governing the persistence of niche increase our confidence in availability species distribution models to predict the response of species in the framework of ongoing of global climate change.

About the authors

V. G. Petrosyan

Severtsov Institute of Ecology and Evolution, RAS

Author for correspondence.
Email: petrosyan@sevin.ru
Russia, 119071, Moscow, Leninsky pr., 33

F. A. Osipov

Severtsov Institute of Ecology and Evolution, RAS

Email: petrosyan@sevin.ru
Russia, 119071, Moscow, Leninsky pr., 33

I. Yu. Feneva

Severtsov Institute of Ecology and Evolution, RAS

Email: petrosyan@sevin.ru
Russia, 119071, Moscow, Leninsky pr., 33

N. N. Dergunova

Severtsov Institute of Ecology and Evolution, RAS

Email: petrosyan@sevin.ru
Russia, 119071, Moscow, Leninsky pr., 33

L. A. Khlyap

Severtsov Institute of Ecology and Evolution, RAS

Email: petrosyan@sevin.ru
Russia, 119071, Moscow, Leninsky pr., 33

References

  1. Даревский И.С., Кан Н.Г., Рябинина Н.Л., Мартиросян И.А., Токарская О.Н., Гречко В.В., Щербак Н.Н., Даниелян Ф.Д., Рысков А.П. Биологические и молекулярно-генетические характеристики партеногенетического вида ящериц Lacerta armeniaca (Mehely), интродуцированного из Армении на Украину // Доклады академии наук. 1998. Т. 363. № 6. С. 846–848.
  2. Даревский И.С., Щербак Н.Н. Акклиматизация партеногенетических ящериц на Украине // Природа. 1967. № 3. С. 93–94.
  3. Доценко И.Б. Состояние экспериментальной популяции кавказских скальных ящериц рода Darevskia в Житомирской области Украины // Науковий вiсник Ужгородського унiверситету. Серiя Бiологiя. 2007. Вип. 21. С. 14–19.
  4. Доценко И.Б., Песков В.Н., Миропольская М.В. Сравнительный анализ внешней морфологии скальных ящериц рода Darevskia, обитающих ныне на территории Украины и их видовая принадлежность // Збiрник праць Зоологiчного музею. 2008–2009. № 40. С. 129–140.
  5. Самые опасные инвазионные виды России (ТОП-100) / Отв. ред. Ю.Ю. Дгебуадзе, В.Г. Петросян, Л.А. Хляп. М.: Тов-во научных изданий КМК, 2018. 688 с.
  6. Araújo M.B., Rahbek C. Ecology. How does climate change affect biodiversity? // Science. 2006. V. 313. P. 1396–1397. https://doi.org/10.1126/science.1131758
  7. Banha F., Gama M., Anastácio P.M. The effect of reproductive occurrences and human descriptors on invasive pet distribution modelling: Trachemys scripta elegans in the Iberian Peninsula // Ecological Modelling. 2017. V. 360. P. 45–52. https://doi.org/10.1016/j.ecolmodel.2017.06.026
  8. Baselga A. Partitioning abundance-based multiple-site dissimilarity into components: Balanced variation in abundance and abundance gradients // Methods Ecol. Evol. 2017. V. 8. P. 799–808. https://doi.org/10.1111/2041-210X.12693
  9. Bellard C., Thuiller W., Leroy B., Genovesi P., Bakkenes M., Courchamp F. Will climate change promote future invasions? // Glob Chang Biol. 2013. V. 19(12). P. 3740–3748. https://doi.org/10.1111/gcb.12344
  10. Beukema W., Martel A., Nguyen T., Goka K., Schmeller D., Yuan Z., Laking A., Nguyen T., Lin Chun-Fu, Shelton Jennifer M.G., Loyau A., Pasmans F. Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palaearctic // Divers. Distrib. 2018. V. 24. P. 1788–1801. https://doi.org/10.1111/DDI.12795
  11. Bradshaw M., Connolly R. Russia’s natural resources in the world economy: history, review and reassessment // Eurasian Geography and Economics. 2016. V. 57(6). P. 700–726. https://doi.org/10.1080/15387216.2016.1254055
  12. Broennimann O., Fitzpatrick M.C., Pearman P.B., Petitpierre B., Pellissier L., Yoccoz N.G., Thuiller W., Fortin M.J., Randin C., Zimmermann N.E., Graham C.H., Guisan A. Measuring ecological niche overlap from occurrence and spatial environmental data // Global Ecology and Biogeography. 2012. V. 21. P. 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
  13. Broennimann O., Mráz P., Petitpierre B., Guisan A., Müller-Schärer H. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America // J. Biogeogr. 2014. V. 41. P. 1126–1136. https://doi.org/10.1111/jbi.12274
  14. Broennimann O., Treier U.A., Muller-Scharer H., Thuiller W., Peterson A.T., Guisan A. Evidence of climatic niche shift during biological invasion // Ecol. Lett. 2007. V. 10. P. 701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x
  15. Clout M.N., Williams P.A. (Eds.) Invasive Species Management: A Handbook of Principles and Techniques. Oxford University Press. 2009. 308 p. https://doi.org/10.1086/656850
  16. Cola V.D., Broennimann O., Petitpierre B., Breiner F., D’Amen M., Randin C., Engler R., Pottier J., Pio D., Dubuis A., Pellissier L., Mateo R., Hordijk W., Salamin N., Guisan A. Ecospat: An R package to support spatial analyses and modeling of species niches and distributions // Ecography. 2017. V. 40. P. 774–787. https://doi.org/10.1111/ECOG.02671
  17. Drake J.M., Bossenbroek J.M. The potential distribution of zebra mussels in the United States // BioScience. 2004. V. 54 P. 931. https://doi.org/10.1641/0006-3568%282004%29054-%5B0931%3ATPDOZM%5D2.0.CO%3B2
  18. Elliott M. Biological pollutants and biological pollution – an increasing cause for concern // Marine Pollution Bulletin. 2003. V. 46(3). P. 275–280. https://doi.org/10.1016/S0025-326X(02)00423-X
  19. Fick S.E., Hijmans R.J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas // International J. Climatology. 2017. V. 37(12). P. 4302–4315.
  20. Gaskin J.F., Schaal B.A. Hybrid Tamarix widespread in U.S. invasion and undetected in native Asian range // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 11256–11259. https://doi.org/10.1073/pnas.132403299
  21. Guisan A., Petitpierre B., Broennimann O., Daehler C., Kueffer C. Unifying niche shift studies: Insights from biological invasions // Trends Ecol. Evol. 2014. V. 29. P. 260–269. https://doi.org/10.1016/j.tree.2014.02.009
  22. Guisan A., Thuiller W., Zimmermann N.E. Habitat suitability and distribution models. Cambridge University Press. 2017. 496 p. https://doi.org/10.1017/9781139028271
  23. Hijmans R.J., Etten J.V., Sumner M., Cheng J., Baston D. et al. Raster: Geographic Data Analysis and Modeling. (2022) Available online: https://rspatial.org/raster [accessed on 9 July, 2022]
  24. Hill M.P., Gallardo B., Terblanche J.S. A global assessment of climatic niche shifts and human influence in insect invasions // Glob. Ecol. Biogeogr. 2017. V. 26. P. 679–689.
  25. Hill M.P., Gallardo B., Terblanche J.S. A global assessment of climatic niche shifts and human influence in insect invasions // Global Ecology and Biogeography. 2017. V. 26. P. 679–689. https://doi.org/10.1111/geb.12578
  26. Jezkov T., Wiens J.J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change // Proc. Biol. Sci. 2016. V. 283. P. 2104. https://doi.org/10.1098/rspb.2016.2104
  27. Jocque M., Field R., Brendonck L., De Meester L. Climatic control of dispersal ecological specialization trade-offs: a metacommunity process at the heart of the latitudinal diversity gradient? // Global Ecology and Biogeography. 2010. V. 19. P. 244–252. https://doi.org/10.1111/J.1466-8238.2009.00510.X
  28. Kooyers N.J., Olsen K.M. Rapid evolution of an adaptive cyanogenesis cline in introduce North American white clover (Trifolium repens L.). Molecular Ecology. 2012. 21. P. 2455–2468. https://doi.org/10.1111/j.1365-294X.2012.05486.x
  29. Kovac K.F., Haight R.G., McCullough D.G., Mercader R.J., Siegert N.W., Liebhold A.M. Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecological Economics. 2010. 69(3). P. 569–578. https://doi.org/10.1016/j.ecolecon.2009.09.004
  30. Lauzeral C., Leprieur F., Beauchard O., Duron Q., Oberdorff T., Brosse S. Identifying climatic niche shifts using coarse-grained occurrence data: A test with non-native freshwater fish. Global Ecology and Biogeography. 2011. 20. P. 407–414. http://dx.doi.org/10.1111/j.1466-8238.2010.00611.x
  31. Lavergne S., Molofsky J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. USA. 2007. 104. P. 3883–3888. https://doi.org/10.1073/pnas.0607324104
  32. Li Y., Liu X., Li X., Petitpierre B., Guisan A. Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species // Global Ecology and Biogeography. 2014. V. 23. P. 1094–1104.
  33. Liu C., Wolter C., Xian W., Jeschke J.M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. USA. 2020a. V. 117(38). P. 23643–23651. https://doi.org/10.1073/pnas.2004289117
  34. Liu C., Wolter C., Xian W., Jeschke J.M. Reply to Stroud: Invasive amphibians and reptiles from islands indeed show higher niche expansion than mainland species. Proc. Natl. Acad. Sci. USA. 2020b. V. 118(1). e2020172118. https://doi.org/10.1073/pnas.2020172118
  35. McNyset K.M. Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas. Ecology of Freshwater Fish. 2005. 14. P. 243–255. http://dx.doi.org/10.1111/j.1600-0633.2005.00101.x
  36. Muscarella R., Galante P.J., Soley-Guardia M., Boria R.A., Kass J.M., Uriarte M., Anderson R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models // Methods Ecol. Evol. 2014. V. 5. P. 1198–1205. https://doi.org/10.1111/2041-210X.12261
  37. Naimi B., Hamm Na, Groen T.A., Skidmore A.K., Toxopeus A.G. Where is positional uncertainty a problem for species distribution modelling // Ecography. 2014. V. 37. P. 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
  38. Nekrasova O.D., Koistiushyn V.A. Current distribution of the introduced rock lizards of the Darevskia (saxicola) complex (Sauria, Lacertidae, Darevskia) in Zhytomyr region (Ukraine) // Vestnik zoologii. 2016. V. 50. P. 225–230.
  39. Omelchenko A.V., Girnyk A.E., Osipov F.A., Petrosyan V.G., Vergun A.A., Ryskov A.P. Detection of genotypic changes in parthenogenetic lizards (Darevskia armeniaca (Mehely)) introduced from Armenia to Ukraine // Russian Journal of Biological Invasions. 2016. V. 7, № 3. P. 275–282. https://doi.org/10.1134/S2075111716030085
  40. Parravicini V., Azzurro E., Kulbicki M., Belmaker J. Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders // Ecological Letter. 2015. V. 18(3). P. 246–253. https://doi.org/10.1111/ele.12401
  41. Pearman P.B., Guisan A., Broennimann O., Randin C.F. Niche dynamics in space and time // Trends Ecol. Evol. 2008. V. 23. P. 149–158. https://doi.org/10.1016/j.tree.2007.11.005
  42. Peterson A.T., Holt R.D. Niche differentiation in Mexican birds: Using point occurrences to detect ecological innovation // Ecology Letters. 2003. V. 6. P. 774–782. https://doi.org/10.1046/j.1461-0248.2003.00502.x
  43. Peterson A.T., Sanchez–Cordero V., Sober N.J. Conservatism of ecological niches in evolutionary time // Science. 1999. V. 285. P. 1265–1267. https://doi.org/10.1126/science.285.5431.1265
  44. Petitpierre B., Broennimann O., Kueffer C., Daehler C., Guisan A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions // Glob. Ecol. Biogeogr. 2017. V. 26. P. 275–287. https://doi.org/10.1111/geb.12530
  45. Petitpierre B., Kueffer C., Broennimann O., Randin C., Daehler C., Guisan A. Climatic niche shifts are rare among terrestrial plant invaders // Science. 2012. V. 335. P. 1344–1348. https://doi.org/10.1126/science.1215933
  46. Petitpierre B., Kue_er C., Broennimann O., Randin C., Daehler C., Guisan A. Climatic niche shifts are rare among terrestrial plant invaders // Science. 2012. V. 335. P. 1344–1348. https://doi.org/10.1126/science.1215933
  47. Petrosyan V., Osipov F., Bobrov V., Dergunova N., Omelchenko A., Varshavskiy A., Danielyan F., Arakelyan M. Species Distribution Models and Niche Partitioning among Unisexual Darevskia dahli and Its Parental Bisexual (D. portschinskii, D. mixta) Rock Lizards in the Caucasus // Mathematics, 2020b. V. 8(8). https://doi.org/10.3390/math8081329
  48. Petrosyan V.G., Osipov F.A., Bobrov V.V., Dergunova N.N., Danielyan F.D., Arakelyan M.S. Analysis of geographical distribution of the parthenogenetic rock lizard Darevskia armeniaca and its parental species (D. mixta, D. valentini) based on ecological modelling // Salamandra. 2019a. V. 55. P. 173–190.
  49. Petrosyan V.G., Osipov F.A., Bobrov V.V., Dergunova N.N., Kropachev I.I., Danielyan F.D., Arakelyan M.S. New records and geographic distribution of the sympatric zones of unisexual and bisexual rock lizards of the genus Darevskia in Armenia and adjacent territories // Biodiversity Data J. 2020c. V. 8. e56030. https://doi.org/10.3897/BDJ.8.e56030
  50. Petrosyan V., Osipov F., Feniova I., Dergunova N., Warshavsky A., Khlyap L., Dzialowski A. The TOP-100 most dangerous invasive alien species in Northern Eurasia: invasion trends and species distribution modelling // NeoBiota. 2023. V.82. P. 23–56. https://doi.org/10.3897/neobiota.82.96282
  51. Pili A.N., Tingley R., Sy E.Y., Diesmos M.L.L., Diesmos A.C. Niche shifts and environmental non-equilibrium undermine the usefulness of ecological niche models for invasion risk assessments // Sci Rep. 2020. V. 14; 10(1). P. 7972. https://doi.org/10.1038/s41598-020-64568-2
  52. Radosavljevic A., Anderson R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation // J. Biogeogr. 2014. V. 41. P. 629–643. https://doi.org/10.1111/jbi.12227
  53. Rolland J., Silvestro D., Schluter D., Guisan A., Broennimann O., Salamin N. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity // Nature Ecology & Evolution. 2018. V. 2. P. 459–464. https://doi.org/10.1038/s41559-017-0451-9
  54. Rollins L.A., Richardson M.F., Shine R. A genetic perspective on rapid evolution in cane toads (Rhinella marina) // Mol. Ecol. 2015. V. 24. P. 2264–2276. https://doi.org/10.1111/mec.13184
  55. Root T.L., Price J.T., Hall K.R., Schneider S.H. Fingerprints of global warming on wild animals and plants // Nature. 2003. V. 421. P. 57–60. https://doi.org/10.1038/nature01333
  56. RStudio is an Integrated Development Environment (IDE) for R Language. Available online: https://www.rstudio.com (accessed on 9 July 2020).
  57. Sax D.F., Early R., Bellemare J. Niche syndromes, species extinction risks, and management under climate change // Trends Ecol. Evol. 2013. V. 28. P. 517–523. https://doi.org/10.1016/j.tree.2013.05.010
  58. Sbrocco E.J., Barber P.H. MARSPEC: ocean climate layers for marine spatial ecology // Ecology. 2013. V. 94(4). P. 13. https://doi.org/10.1890/12-1358.1
  59. Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Pagad S., Pyšek P., van Kleunen M., Winter M., Ansong M., Arianoutsou M., Bacher S., Blasius B., Brockerhoff E.G., Brundu G., Capinha C., Causton C.E., Celesti-Grapow L., Dawson W., Dullinger S., Economo E.P., Fuentes N., Guénard B., Jäger H., Kartesz J., Kenis M., Kühn I., Lenzner B., Liebhold A.M., Mosena A., Moser D., Nentwig W., Nishino M., Pearman D., Pergl J., Rabitsch W., Rojas-Sandoval J., Roques A., Rorke S., Rossinelli S., Roy H.E., Scalera R., Schindler S., Štajerová K., Tokarska-Guzik B., Walker K., Ward D.F., Yamanaka T., Essl F. The global rise in emerging alien species results from increased accessibility of new source pools // PNAS. 2018. V. 115(10). P. 1–10. https://doi.org/10.1073/pnas.1719429115
  60. Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Pagad S., Pyšek P., Winter M., Arianoutsou M., Bacher S., Blasius B., Brundu G., Capinha C., Celesti-Grapow L., Dawson W., Dullinger S., Fuentes N., Jäger H., Kartesz J., Kenis K., Kreft H., Kühn I., Lenzner B., Liebhold A., Mosena A., Moser D., Nishino M., Pearman D., Pergl J., Rabitsch W., Rojas-Sandoval J., Roques A., Rorke S., Rossinelli S., Roy H.E., Scalera R., Schindler S., Štajerová K., Tokarska–Guzik B., van Kleunen M., Walker K., Weigelt P., Yamanaka T., Essl F. No saturation in the accumulation of alien species worldwide // Nature Communications. 2017. V. 8(1). P. 1–9. https://doi.org/10.1038/ncomms14435
  61. Sexton J.P., Montiel J., Shay J.E., Stephens M.R., Slatyer R.A. Evolution of ecological niche breadth // Annu. Rev. Ecol. Evol. Syst. 2017. V. 48. P. 183–206. https://doi.org/10.1146/ANNUREV-ECOLSYS-110316-023003
  62. Simberloff D. The Role of Propagule Pressure in Biological Invasions // Annual Review of Ecology, Evolution, and Systematics. 2009. V. 40. P. 81–102. https://doi.org/10.1146/annurev.ecolsys.110308.120304
  63. Soberon J., Arroyo-Pena B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson // PLoS One. 2017. V. 12. e0175138. https://doi.org/10.1371/journal.pone.0175138
  64. Stroud J.T. Island species experience higher niche expansion and lower niche conservatism during invasion // Proc. Natl Acad. Sci. USA. 2021 Jan 5. V. 118(1). P. e2018949118. https://doi.org/10.1073/pnas.2018949118
  65. Strubbe D., Beauchard O., Matthysen E. Niche conservatism among non-native vertebrates in Europe and North America // Ecography. 2015. V. 38. P. 321–329.
  66. Strubbe D., Broennimann O., Chiron F., Matthysen E. Niche conservatism in non-native birds in Europe: Niche unfilling rather than niche expansion // Global Ecology and Biogeography. 2013. V. 22. P. 962–970.
  67. Tingley R., Thompson M.B., Hartley S., Chapple D.G. Patterns of niche filling and expansion across the invaded ranges of an Australian lizard // Ecography. 2016. V. 39. P. 270–280.
  68. Tingley R., Vallinoto M., Sequeira F., Kearney M.R. Realized niche shift during a global biological invasion // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 10233–10238.
  69. Torres U., Godsoe W., Buckley H., Parry M., Lustig A., Worner S. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand // Diversity and Distributions. 2018. V. 24. P. 1802–1815. https://doi.org/10.1111/DDI.12818
  70. Warren D., Glor R., Turelli M. ENMtools: A toolbox for comparative studies of environmental niche models // Ecography. 2010. V. 33. P. 607–611. https://doi.org/10.1111/j.1600-0587.2009.0614Nice2.x
  71. Warren D.L., Glor R.E., Turelli M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution // Evolution. 2008. V. 62. P. 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
  72. Wiens J.A., Stralberg D., Jongsomjit D., Howell C.A., Snyder M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties // Proc. Natl. Acad. Sci. USA. 106 (suppl. 2). 2009. P. 19729–19736. https://doi.org/10.1073/pnas.0901639106
  73. Wiens J.J., Graham C.H. Niche conservatism: Integrating evolution, ecology, and conservation biology // Annu. Rev. Ecol. Evol. Syst. 2005. V. 36. P. 519–539. https://doi.org/10.1146/ANNUREV.ECOLSYS.36. 102803.095431
  74. Wittenberg R., Cock M.J. (Eds.) Invasive alien species: a toolkit of best prevention and management practices (CABI). 2001. V. https://doi.org/10.1079/9780851995694.0000
  75. Zenni R.D., Bailey J.K., Simberloff D. Rapid evolution and range expansion of an invasive plant are driven by provenance-environment interactions // Ecol. Lett. 2014. V. 17. P. 727–735. https://doi.org/10.1111/ele.12278

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (523KB)
3.

Download (641KB)
4.

Download (551KB)
5.

Download (476KB)
6.

Download (575KB)
7.

Download (608KB)
8.

Download (294KB)
9.

Download (178KB)

Copyright (c) 2023 В.Г. Петросян, Ф.А. Осипов, И.Ю. Фенева, Н.Н. Дергунова, Л.А. Хляп

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies