EQUATIONS OF MARANGONI BOUNDARY LAYER IN THE SECOND GRADE FLUID

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Second grade fluid is one of the basic mathematical models in dynamics of water polymers solutions. Equations of the Marangoni layer in such fluid are formulated. Solvability of linearized initial boundary problem for this equation is proved. The exact self- similar solution of mentioned equations is constructed. With the help of differential constraints method, solution of their solutions having a wide functional arbitrariness is found.

About the authors

V. V Pukhnachev

Lavrentyev Institute of Hydrodynamics; Novosibirsk State University

Email: pukhnachev@gmail.com
Novosibirsk, Russia; Novosibirsk, Russia

References

  1. Rivlin R.S., Ericksen J.L. Stress-deformation relations for isotropic materials // J. Ration Mech. Anal. 1955. V. 4. P. 323–425.
  2. Frolovskaya O.A., Pukhnachev V.V. Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions // Polymers. 2018. V. 10. P. 684–696.
  3. Galdi G.P. Mathematical theory of second-grade fluids // In: Stability and Waves Propagation in Fluids and Solids. Galdi G.P., Ed.; Springer: Wien, Austria. 1995. P. 67–104.
  4. Cioranecku D., Girault V. Weak and classical solutions of a family second grade fluids // Int. J. Non-Linear Mech. 1997. V. 32. P. 317–335.
  5. Napolitano L.G. Thermodynamics and dynamics of surface phase // Acta Astronautica. 1979. V. 6. P. 1093–1112.
  6. Batishchev V.A., Kuznetsov V.V., and Pukhnachev V.V. Marangoni boundary layers // Progress in Aerospace Sciences. 1989. V. 26. P. 353–370.
  7. Meleshko S.V., Pukhnachev V.V. Group analysis of the boundary layer equations in the model of оpolymer solutions // Symmetry. 2020. V. 12. P. 1084–1103.
  8. Павловский В.А. К вопросу о теоретическом описании слабых водных растворов полимеров // ДАН СССР. 1971. Т. 200. № 4. С. 809–812.
  9. Трусделл К. Первоначальный курс рациональной механики сплошных сред. М.: Мир, 1975. 592 с.
  10. Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978. 399 с.
  11. Сидоров А.Ф., Шапеев В.П., Яненко Н.Н. Метод дифференциальных связей и его приложения в газовой динамике. Новосибирск: Наука, Сиб. отделение, 1984. 272 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).