A New Proof of the Kuhn–Tucker and Farkas Theorems
- Авторлар: Evtushenko Y.G.1, Tret’yakov A.A.1,2,3
-
Мекемелер:
- Dorodnitsyn Computing Centre, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
- System Research Institute, Polish Academy of Sciences
- Faculty of Sciences, Siedlce University
- Шығарылым: Том 58, № 7 (2018)
- Беттер: 1035-1039
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179690
- DOI: https://doi.org/10.1134/S0965542518070072
- ID: 179690
Дәйексөз келтіру
Аннотация
For the minimization problem for a differentiable function on a set defined by inequality constraints, a simple proof of the Kuhn–Tucker theorem in the Fritz John form is presented. Only an elementary property of the projection of a point onto a convex closed set is used. The approach proposed by the authors is applied to prove Farkas’ theorem. All results are extended to the case of Banach spaces.
Негізгі сөздер
Авторлар туралы
Yu. Evtushenko
Dorodnitsyn Computing Centre, Federal Research Center “Computer Science and Control,”Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: evt@ccas.ru
Ресей, Moscow, 119333
A. Tret’yakov
Dorodnitsyn Computing Centre, Federal Research Center “Computer Science and Control,”Russian Academy of Sciences; System Research Institute, Polish Academy of Sciences; Faculty of Sciences, Siedlce University
Хат алмасуға жауапты Автор.
Email: tret@ap.siedlce.pl
Ресей, Moscow, 119333; Warsaw, 01-447; Siedlce, 08-110
Қосымша файлдар
