A New Proof of the Kuhn–Tucker and Farkas Theorems
- Авторы: Evtushenko Y.G.1, Tret’yakov A.A.1,2,3
-
Учреждения:
- Dorodnitsyn Computing Centre, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences
- System Research Institute, Polish Academy of Sciences
- Faculty of Sciences, Siedlce University
- Выпуск: Том 58, № 7 (2018)
- Страницы: 1035-1039
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179690
- DOI: https://doi.org/10.1134/S0965542518070072
- ID: 179690
Цитировать
Аннотация
For the minimization problem for a differentiable function on a set defined by inequality constraints, a simple proof of the Kuhn–Tucker theorem in the Fritz John form is presented. Only an elementary property of the projection of a point onto a convex closed set is used. The approach proposed by the authors is applied to prove Farkas’ theorem. All results are extended to the case of Banach spaces.
Ключевые слова
Об авторах
Yu. Evtushenko
Dorodnitsyn Computing Centre, Federal Research Center “Computer Science and Control,”Russian Academy of Sciences
Автор, ответственный за переписку.
Email: evt@ccas.ru
Россия, Moscow, 119333
A. Tret’yakov
Dorodnitsyn Computing Centre, Federal Research Center “Computer Science and Control,”Russian Academy of Sciences; System Research Institute, Polish Academy of Sciences; Faculty of Sciences, Siedlce University
Автор, ответственный за переписку.
Email: tret@ap.siedlce.pl
Россия, Moscow, 119333; Warsaw, 01-447; Siedlce, 08-110
Дополнительные файлы
