Generalized Boltzmann-Type Equations for Aggregation in Gases


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker–Döring-type equation). The transition to a continuum description is performed.

作者简介

S. Adzhiev

Faculty of Mechanics and Mathematics

编辑信件的主要联系方式.
Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 119991

V. Vedenyapin

Keldysh Institute of Applied Mathematics; RUDN University

Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 125047; Moscow, 117198

Yu. Volkov

Keldysh Institute of Applied Mathematics; RUDN University

Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 125047; Moscow, 117198

I. Melikhov

Faculty of Mechanics and Mathematics

Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017