Generalized Boltzmann-Type Equations for Aggregation in Gases
- 作者: Adzhiev S.Z.1, Vedenyapin V.V.2,3, Volkov Y.A.2,3, Melikhov I.V.1
-
隶属关系:
- Faculty of Mechanics and Mathematics
- Keldysh Institute of Applied Mathematics
- RUDN University
- 期: 卷 57, 编号 12 (2017)
- 页面: 2017-2029
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179601
- DOI: https://doi.org/10.1134/S096554251712003X
- ID: 179601
如何引用文章
详细
The coalescence and fragmentation of particles in a dispersion system are investigated by applying kinetic theory methods, namely, by generalizing the Boltzmann kinetic equation to coalescence and fragmentation processes. Dynamic equations for the particle concentrations in the system are derived using the kinetic equations of motion. For particle coalescence and fragmentation, equations for the particle momentum, coordinate, and mass distribution functions are obtained and the coalescence and fragmentation coefficients are calculated. The equilibrium mass and velocity distribution functions of the particles in the dispersion system are found in the approximation of an active terminal group (Becker–Döring-type equation). The transition to a continuum description is performed.
作者简介
S. Adzhiev
Faculty of Mechanics and Mathematics
编辑信件的主要联系方式.
Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 119991
V. Vedenyapin
Keldysh Institute of Applied Mathematics; RUDN University
Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 125047; Moscow, 117198
Yu. Volkov
Keldysh Institute of Applied Mathematics; RUDN University
Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 125047; Moscow, 117198
I. Melikhov
Faculty of Mechanics and Mathematics
Email: sergeyadzhiev@yandex.ru
俄罗斯联邦, Moscow, 119991
补充文件
