On sharp estimates of the convergence of double Fourier–Bessel series
- 作者: Abilov V.A.1, Abilova F.V.1, Kerimov M.K.2
-
隶属关系:
- Dagestan State Technical University
- Dorodnicyn Computing Center
- 期: 卷 57, 编号 11 (2017)
- 页面: 1735-1740
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179486
- DOI: https://doi.org/10.1134/S0965542517110021
- ID: 179486
如何引用文章
详细
The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier–Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentiable functions of two variables characterized by a generalized modulus of continuity are obtained. The proofs of four theorems on this issue, which can be directly applied to solving particular problems of mathematical physics, approximation theory, etc., are presented.
作者简介
V. Abilov
Dagestan State Technical University
Email: comp_mat@ccas.ru
俄罗斯联邦, Makhachkala, Dagestan, 367015
F. Abilova
Dagestan State Technical University
Email: comp_mat@ccas.ru
俄罗斯联邦, Makhachkala, Dagestan, 367015
M. Kerimov
Dorodnicyn Computing Center
编辑信件的主要联系方式.
Email: comp_mat@ccas.ru
俄罗斯联邦, Moscow, 119333
补充文件
