On sharp estimates of the convergence of double Fourier–Bessel series
- Autores: Abilov V.A.1, Abilova F.V.1, Kerimov M.K.2
-
Afiliações:
- Dagestan State Technical University
- Dorodnicyn Computing Center
- Edição: Volume 57, Nº 11 (2017)
- Páginas: 1735-1740
- Seção: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179486
- DOI: https://doi.org/10.1134/S0965542517110021
- ID: 179486
Citar
Resumo
The problem of approximation of a differentiable function of two variables by partial sums of a double Fourier–Bessel series is considered. Sharp estimates of the rate of convergence of the double Fourier–Bessel series on the class of differentiable functions of two variables characterized by a generalized modulus of continuity are obtained. The proofs of four theorems on this issue, which can be directly applied to solving particular problems of mathematical physics, approximation theory, etc., are presented.
Sobre autores
V. Abilov
Dagestan State Technical University
Email: comp_mat@ccas.ru
Rússia, Makhachkala, Dagestan, 367015
F. Abilova
Dagestan State Technical University
Email: comp_mat@ccas.ru
Rússia, Makhachkala, Dagestan, 367015
M. Kerimov
Dorodnicyn Computing Center
Autor responsável pela correspondência
Email: comp_mat@ccas.ru
Rússia, Moscow, 119333
Arquivos suplementares
