Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.

Авторлар туралы

L. Akulenko

Moscow Institute of Physics and Technology; Bauman Moscow State Technical University; Institute for Problems of Mechanics

Хат алмасуға жауапты Автор.
Email: l.akulenko@bk.ru
Ресей, Dolgoprudnyi, Moscow oblast, 141701; Moscow, 105005; Moscow, 119526

A. Gavrikov

Institute for Problems of Mechanics

Email: l.akulenko@bk.ru
Ресей, Moscow, 119526

S. Nesterov

Institute for Problems of Mechanics

Email: l.akulenko@bk.ru
Ресей, Moscow, 119526

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017