On the Geometric Properties of the Poisson Kernel for the Lamé Equation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

It is shown that the Poisson kernel for the Lamé equation in a disk can be interpreted as a bi-univalent mapping of the projection of an elliptic cone onto the projection of the surface of revolution of a hyperbola. The corresponding mapping \({{f}_{\sigma }}\) of these surfaces is bijective. Such an interpretation sheds light on the nature of the well-known special property of solutions of elliptic systems on a plane to map points to curves and vice versa. In particular, a singular point of the kernel under study can be considered as the projection of the cone element so that the mapping \({{f}_{\sigma }}\) is regular in the sense that this element is bijectively mapped into a curve.

Авторлар туралы

A. Bagapsh

Dorodnitsyn Computing Center, Russian Academy of Sciences; Bauman Moscow State Technical University

Хат алмасуға жауапты Автор.
Email: a.bagapsh@gmail.com
Ресей, Moscow, 119991; Moscow, 105005

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019