Why Do We Need Voronoi Cells and Delaunay Meshes? Essential Properties of the Voronoi Finite Volume Method
- Авторы: Gärtner K.1, Kamenski L.1
-
Учреждения:
- m4sim GmbH, Seydelstr. 31
- Выпуск: Том 59, № 12 (2019)
- Страницы: 1930-1944
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180906
- DOI: https://doi.org/10.1134/S096554251912008X
- ID: 180906
Цитировать
Аннотация
Unlike other schemes that locally violate the essential stability properties of the analytic parabolic and elliptic problems, Voronoi finite volume methods (FVM) and boundary conforming Delaunay meshes provide good approximation of the geometry of a problem and are able to preserve the essential qualitative properties of the solution for any given resolution in space and time as well as changes in time scales of multiple orders of magnitude. This work provides a brief description of the essential and useful properties of the Voronoi FVM, application examples, and a motivation why Voronoi FVM deserve to be used more often in practice than they are currently.
Ключевые слова
Об авторах
K. Gärtner
m4sim GmbH, Seydelstr. 31
Автор, ответственный за переписку.
Email: info@m4sim.de
Германия, Berlin, 10117
L. Kamenski
m4sim GmbH, Seydelstr. 31
Email: info@m4sim.de
Германия, Berlin, 10117
Дополнительные файлы
