The Green Function of the Dirichlet Problem for the Biharmonic Equation in a Ball
- Авторы: Karachik V.V.1
-
Учреждения:
- South Ural State University
- Выпуск: Том 59, № 1 (2019)
- Страницы: 66-81
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180341
- DOI: https://doi.org/10.1134/S0965542519010111
- ID: 180341
Цитировать
Аннотация
An elementary solution of the biharmonic equation is defined. By using the properties of the Gegenbauer polynomials, series expansions of this elementary solution and an associated function with respect to a complete system of homogeneous harmonic polynomials orthogonal on a unit sphere are obtained. Then the Green function of the Dirichlet problem for the biharmonic equation in a unit ball is constructed in the case when the space dimension n is larger than 2. For \(n > 4\), a series expansion of the Green function with respect to a complete system of homogeneous harmonic polynomials orthogonal on a unit sphere is obtained. This expansion is used to calculate the integral, over a unit ball, of a homogeneous harmonic polynomial multiplied by a positive power of the norm of the independent variable with a kernel being the Green function. The Green function is found in the case \(n = 2\).
Ключевые слова
Об авторах
V. Karachik
South Ural State University
Автор, ответственный за переписку.
Email: karachik@susu.ru
Россия, Chelyabinsk, 454080
Дополнительные файлы
