Octahedral Projections of a Point onto a Polyhedron


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In computational methods and mathematical modeling, it is often required to find vectors of a linear manifold or a polyhedron that are closest to a given point. The “closeness” can be understood in different ways. In particular, the distances generated by octahedral, Euclidean, and Hölder norms can be used. In these norms, weight coefficients can also be introduced and varied. This paper presents the results on the properties of a set of octahedral projections of the origin of coordinates onto a polyhedron. In particular, it is established that any Euclidean and Hölder projection can be obtained as an octahedral projection due to the choice of weights in the octahedral norm. It is proven that the set of octahedral projections of the origin of coordinates onto a polyhedron coincides with the set of Pareto-optimal solutions of the multicriterion problem of minimizing the absolute values of all components.

Sobre autores

V. Zorkal’tsev

Energy Systems Institute, Siberian Branch

Autor responsável pela correspondência
Email: zork@isem.sei.irk.ru
Rússia, Irkutsk, 664033

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018