On one model problem for the reaction–diffusion–advection equation
- Авторы: Levashova N.T.1, Davydova M.A.1, Zakharova S.A.1
-
Учреждения:
- Moscow State University
- Выпуск: Том 57, № 9 (2017)
- Страницы: 1528-1539
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179398
- DOI: https://doi.org/10.1134/S0965542517090056
- ID: 179398
Цитировать
Аннотация
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction–diffusion–advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
Об авторах
N. Levashova
Moscow State University
Email: m.davydova@bk.ru
Россия, Moscow, 119991
M. Davydova
Moscow State University
Автор, ответственный за переписку.
Email: m.davydova@bk.ru
Россия, Moscow, 119991
S. Zakharova
Moscow State University
Email: m.davydova@bk.ru
Россия, Moscow, 119991
Дополнительные файлы
