On one model problem for the reaction–diffusion–advection equation
- 作者: Levashova N.T.1, Davydova M.A.1, Zakharova S.A.1
-
隶属关系:
- Moscow State University
- 期: 卷 57, 编号 9 (2017)
- 页面: 1528-1539
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179398
- DOI: https://doi.org/10.1134/S0965542517090056
- ID: 179398
如何引用文章
详细
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction–diffusion–advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
作者简介
N. Levashova
Moscow State University
Email: m.davydova@bk.ru
俄罗斯联邦, Moscow, 119991
M. Davydova
Moscow State University
编辑信件的主要联系方式.
Email: m.davydova@bk.ru
俄罗斯联邦, Moscow, 119991
S. Zakharova
Moscow State University
Email: m.davydova@bk.ru
俄罗斯联邦, Moscow, 119991
补充文件
