Behavior of the formal solution to a mixed problem for the wave equation


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The behavior of the formal solution, obtained by the Fourier method, to a mixed problem for the wave equation with arbitrary two-point boundary conditions and the initial condition φ(х) (for zero initial velocity) with weaker requirements than those for the classical solution is analyzed. An approach based on the Cauchy–Poincare technique, consisting in the contour integration of the resolvent of the operator generated by the corresponding spectral problem, is used. Conditions giving the solution to the mixed problem when the wave equation is satisfied only almost everywhere are found. When φ(x) is an arbitrary function from L2[0, 1], the formal solution converges almost everywhere and is a generalized solution to the mixed problem.

Негізгі сөздер

Авторлар туралы

A. Khromov

Saratov State University

Хат алмасуға жауапты Автор.
Email: KhromovAP@info.sgu.ru
Ресей, ul. Astrakhanskaya 83, Saratov, 410012

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016