Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonmonotonic Nonlinearities
- 作者: Denisov I.V.1, Denisov A.I.2
-
隶属关系:
- Tula State Lev Tolstoy Pedagogical University
- National Research University Higher School of Economics
- 期: 卷 59, 编号 9 (2019)
- 页面: 1518-1527
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180802
- DOI: https://doi.org/10.1134/S0965542519090070
- ID: 180802
如何引用文章
详细
For a singularly perturbed parabolic equation \({{\epsilon }^{2}}\left( {{{a}^{2}}\frac{{{{\partial }^{2}}u}}{{\partial {{x}^{2}}}} - \frac{{\partial u}}{{\partial t}}} \right) = F(u,x,t,\epsilon )\) in a rectangle, a problem with boundary conditions of the first kind is considered. At the corner points of the rectangle, the function \(F\) is assumed to be quadratic and nonmonotonic with respect to the variable \(u\) on the interval from the root of the degenerate equation to the boundary value. The main attention is paid to constructing the main term of the corner part of the asymptotics of the solution as \(\epsilon \to 0\).
作者简介
I. Denisov
Tula State Lev Tolstoy Pedagogical University
编辑信件的主要联系方式.
Email: den_tspu@mail.ru
俄罗斯联邦, Tula, 300026
A. Denisov
National Research University Higher School of Economics
编辑信件的主要联系方式.
Email: den_tspu@mail.ru
俄罗斯联邦, Moscow, 101000
补充文件
