A Comparative Analysis of Efficiency of Using the Legendre Polynomials and Trigonometric Functions for the Numerical Solution of Ito Stochastic Differential Equations
- Авторлар: Kuznetsov D.F.1
-
Мекемелер:
- Peter the Great St. Petersburg Polytechnic University
- Шығарылым: Том 59, № 8 (2019)
- Беттер: 1236-1250
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180730
- DOI: https://doi.org/10.1134/S0965542519080116
- ID: 180730
Дәйексөз келтіру
Аннотация
This paper is devoted to the comparative analysis of the efficiency of using the Legendre polynomials and trigonometric functions for the numerical solution of Ito stochastic differential equations under the method of approximating multiple Ito and Stratonovich stochastic integrals based on generalized multiple Fourier series. Using the multiple stochastic integrals of multiplicity 1–3 appearing in the Ito–Taylor expansion as an example, it is shown that their expansions obtained using multiple Fourier–Legendre series are significantly simpler and less computationally costly than their analogs obtained on the basis of multiple trigonometric Fourier series. The results obtained in this paper can be useful for constructing and implementing strong numerical methods for solving Ito stochastic differential equations with multidimensional nonlinear noise.
Авторлар туралы
D. Kuznetsov
Peter the Great St. Petersburg Polytechnic University
Хат алмасуға жауапты Автор.
Email: sde_kuznetsov@inbox.ru
Ресей, St. Petersburg, 195251
Қосымша файлдар
