Duality Gap Estimates for Weak Chebyshev Greedy Algorithms in Banach Spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper studies weak greedy algorithms for finding sparse solutions of convex optimization problems in Banach spaces. We consider the concept of duality gap, the values of which are implicitly calculated at the step of choosing the direction of the fastest descent at each iteration of the greedy algorithm. We show that these values give upper bounds for the difference between the values of the objective function in the current state and the optimal point. Since the value of the objective function at the optimal point is not known in advance, the current values of the duality gap can be used, for example, in the stopping criteria for the greedy algorithm. In the paper, we find estimates of the duality gap values depending on the number of iterations for the weak greedy algorithms under consideration.

作者简介

S. Mironov

Saratov State University

编辑信件的主要联系方式.
Email: mironovsv@info.sgu.ru
俄罗斯联邦, Saratov, 410012

S. Sidorov

Saratov State University

编辑信件的主要联系方式.
Email: sidorovsp@info.sgu.ru
俄罗斯联邦, Saratov, 410012

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019