Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number \(n\) of baseline trajectories are modeled for each medium realization. The optimal value of \(n\) is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.

Sobre autores

G. Mikhailov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Autor responsável pela correspondência
Email: gam@sscc.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019