Improvement of Multidimensional Randomized Monte Carlo Algorithms with “Splitting”


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Randomized Monte Carlo algorithms are constructed by jointly realizing a baseline probabilistic model of the problem and its random parameters (random medium) in order to study a parametric distribution of linear functionals. This work relies on statistical kernel estimation of the multidimensional distribution density with a “homogeneous” kernel and on a splitting method, according to which a certain number \(n\) of baseline trajectories are modeled for each medium realization. The optimal value of \(n\) is estimated using a criterion for computational complexity formulated in this work. Analytical estimates of the corresponding computational efficiency are obtained with the help of rather complicated calculations.

Авторлар туралы

G. Mikhailov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: gam@sscc.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019