Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonlinearities


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A singularly perturbed parabolic equation

\({{\varepsilon }^{2}}\left( {{{a}^{2}}\frac{{{{\partial }^{2}}u}}{{\partial {{x}^{2}}}} - \frac{{\partial u}}{{\partial t}}} \right) = F(u,x,t,\varepsilon )\)
is considered in a rectangle with the boundary conditions of the first kind. At the corner points of the rectangle, the monotonicity of the function \(F\) with respect to the variable \(u\) in the interval from the root of the degenerate equation to the boundary value is not required. The asymptotic approximation of the solution is constructed under the assumption that the principal term of the corner part exists. A complete asymptotic expansion of the solution as \(\varepsilon \to 0\) is constructed, and its uniformity in a closed rectangle is proved.

作者简介

A. I. Denisov

National Research University Higher School of Economics

Email: den_tspu@mail.ru
俄罗斯联邦, Moscow, 101000

I. V. Denisov

Tula State Lev Tolstoy Pedagogical University

编辑信件的主要联系方式.
Email: den_tspu@mail.ru
俄罗斯联邦, Tula, 300026

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019