On the Parameter-Uniform Convergence of Exponential Spline Interpolation in the Presence of a Boundary Layer


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper is concerned with the problem of generalized spline interpolation of functions having large-gradient regions. Splines of the class C2, represented on each interval of the grid by the sum of a second-degree polynomial and a boundary layer function, are considered. The existence and uniqueness of the interpolation L-spline are proven, and asymptotically exact two-sided error estimates for the class of functions with an exponential boundary layer are obtained. It is established that the cubic and parabolic interpolation splines are limiting for the solution of the given problem. The results of numerical experiments are presented.

Sobre autores

I. Blatov

Povolzhskiy State University of Telecommunications and Informatics

Autor responsável pela correspondência
Email: blatow@mail.ru
Rússia, Samara, 443010

A. Zadorin

Sobolev Institute of Mathematics, Omsk Branch, Siberian Branch

Email: blatow@mail.ru
Rússia, Omsk, 644043

E. Kitaeva

Samara State Aerospace University

Email: blatow@mail.ru
Rússia, Samara, 443086

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018