Numerical solution of vector Sturm–Liouville problems with Dirichlet conditions and nonlinear dependence on the spectral parameter


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A numerical-analytical iterative method is proposed for solving generalized self-adjoint regular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear functions of the spectral parameter. For a relatively close initial approximation, the method is shown to have second-order convergence with respect to a small parameter. Test examples are considered, and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved taking into account its rotational inertia.

Sobre autores

L. Akulenko

Moscow Institute of Physics and Technology; Bauman Moscow State Technical University; Institute for Problems of Mechanics

Autor responsável pela correspondência
Email: l.akulenko@bk.ru
Rússia, Dolgoprudnyi, Moscow oblast, 141701; Moscow, 105005; Moscow, 119526

A. Gavrikov

Institute for Problems of Mechanics

Email: l.akulenko@bk.ru
Rússia, Moscow, 119526

S. Nesterov

Institute for Problems of Mechanics

Email: l.akulenko@bk.ru
Rússia, Moscow, 119526

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017