Effect of Heat on Deformations in Material with a Defect


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval \([ - 1;1]\) of the \(O{{x}_{1}}\) axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as \({{x}_{1}} \to \pm 1,\;{{x}_{2}} \to 0\), of the displacements \(u({{x}_{1}},{{x}_{2}}),\)\(v({{x}_{1}},{{x}_{2}})\) of a point \(({{x}_{1}},{{x}_{2}})\) under material deformations and the asymptotic behavior of their derivatives. Here, the functions \(u({{x}_{1}},{{x}_{2}}),\)\(v({{x}_{1}},{{x}_{2}})\) are assumed to depend on the material temperature \(T({{x}_{1}},{{x}_{2}})\) at the point \(({{x}_{1}},{{x}_{2}})\).

Авторлар туралы

E. Astakhova

Voronezh State University

Хат алмасуға жауапты Автор.
Email: astahova.ekaterina.94@mail.ru
Ресей, Voronezh, 394018

A. Glushko

Voronezh State University

Хат алмасуға жауапты Автор.
Email: kuchp2@math.vsu.ru
Ресей, Voronezh, 394018

E. Loginova

Voronezh State University

Хат алмасуға жауапты Автор.
Email: loginova@vsu.ru
Ресей, Voronezh, 394018

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019