Effect of Heat on Deformations in Material with a Defect


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval \([ - 1;1]\) of the \(O{{x}_{1}}\) axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as \({{x}_{1}} \to \pm 1,\;{{x}_{2}} \to 0\), of the displacements \(u({{x}_{1}},{{x}_{2}}),\)\(v({{x}_{1}},{{x}_{2}})\) of a point \(({{x}_{1}},{{x}_{2}})\) under material deformations and the asymptotic behavior of their derivatives. Here, the functions \(u({{x}_{1}},{{x}_{2}}),\)\(v({{x}_{1}},{{x}_{2}})\) are assumed to depend on the material temperature \(T({{x}_{1}},{{x}_{2}})\) at the point \(({{x}_{1}},{{x}_{2}})\).

作者简介

E. Astakhova

Voronezh State University

编辑信件的主要联系方式.
Email: astahova.ekaterina.94@mail.ru
俄罗斯联邦, Voronezh, 394018

A. Glushko

Voronezh State University

编辑信件的主要联系方式.
Email: kuchp2@math.vsu.ru
俄罗斯联邦, Voronezh, 394018

E. Loginova

Voronezh State University

编辑信件的主要联系方式.
Email: loginova@vsu.ru
俄罗斯联邦, Voronezh, 394018

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019