Stationary Problem of Radiative Heat Transfer with Cauchy Boundary Conditions
- Авторы: Kolobov A.G.1, Pak T.V.1, Chebotarev A.Y.1,2
-
Учреждения:
- Far Eastern Federal University
- Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
- Выпуск: Том 59, № 7 (2019)
- Страницы: 1199-1203
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180714
- DOI: https://doi.org/10.1134/S0965542519070091
- ID: 180714
Цитировать
Аннотация
A stationary problem of radiative-conductive heat transfer in a three-dimensional domain is studied in the \({{P}_{1}}\)-approximation of the radiative transfer equation. A formulation is considered in which the boundary conditions for the radiation intensity are not specified but an additional boundary condition for the temperature field is imposed. Nonlocal solvability of the problem is established, and it is shown that the solution set is homeomorphic to a finite-dimensional compact. A condition for the uniqueness of the solution is presented.
Ключевые слова
Об авторах
A. Kolobov
Far Eastern Federal University
Email: cheb@iam.dvo.ru
Россия, Vladivostok, 690050
T. Pak
Far Eastern Federal University
Email: cheb@iam.dvo.ru
Россия, Vladivostok, 690050
A. Chebotarev
Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Автор, ответственный за переписку.
Email: cheb@iam.dvo.ru
Россия, Vladivostok, 690050; Vladivostok, 690041
Дополнительные файлы
