Stationary Problem of Radiative Heat Transfer with Cauchy Boundary Conditions
- Авторлар: Kolobov A.G.1, Pak T.V.1, Chebotarev A.Y.1,2
-
Мекемелер:
- Far Eastern Federal University
- Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
- Шығарылым: Том 59, № 7 (2019)
- Беттер: 1199-1203
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180714
- DOI: https://doi.org/10.1134/S0965542519070091
- ID: 180714
Дәйексөз келтіру
Аннотация
A stationary problem of radiative-conductive heat transfer in a three-dimensional domain is studied in the \({{P}_{1}}\)-approximation of the radiative transfer equation. A formulation is considered in which the boundary conditions for the radiation intensity are not specified but an additional boundary condition for the temperature field is imposed. Nonlocal solvability of the problem is established, and it is shown that the solution set is homeomorphic to a finite-dimensional compact. A condition for the uniqueness of the solution is presented.
Негізгі сөздер
Авторлар туралы
A. Kolobov
Far Eastern Federal University
Email: cheb@iam.dvo.ru
Ресей, Vladivostok, 690050
T. Pak
Far Eastern Federal University
Email: cheb@iam.dvo.ru
Ресей, Vladivostok, 690050
A. Chebotarev
Far Eastern Federal University; Institute of Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: cheb@iam.dvo.ru
Ресей, Vladivostok, 690050; Vladivostok, 690041
Қосымша файлдар
