Compactons and Riemann Waves of an Extended Modified Korteweg–de Vries Equation with Nonlinear Dispersion
- Авторлар: Popov S.P.1
-
Мекемелер:
- Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”
- Шығарылым: Том 58, № 3 (2018)
- Беттер: 437-448
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180116
- DOI: https://doi.org/10.1134/S0965542518030107
- ID: 180116
Дәйексөз келтіру
Аннотация
The K(fm, gn) equation is studied, which generalizes the modified Korteweg–de Vries equation K(u3, u1) and the Rosenau–Hyman equation K(um, un) to other dependences of nonlinearity and dispersion on the solution. The considered functions f(u) and g(u) can be linear or can have the form of a smoothed step. It is found numerically that, depending on the form of nonlinearity and dispersion, the given equation has compacton and kovaton solutions, Riemann-wave solutions, and oscillating wave packets of two types. It is shown that the interaction between solutions of all found types occurs with the preservation of their parameters.
Авторлар туралы
S. Popov
Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control,”
Хат алмасуға жауапты Автор.
Email: sppopov@yandex.ru
Ресей, Moscow, 119333
Қосымша файлдар
