Mixed Problem for a Homogeneous Wave Equation with a Nonzero Initial Velocity
- Авторлар: Khromov A.P.1
-
Мекемелер:
- Saratov State University
- Шығарылым: Том 58, № 9 (2018)
- Беттер: 1531-1543
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179862
- DOI: https://doi.org/10.1134/S0965542518090099
- ID: 179862
Дәйексөз келтіру
Аннотация
A mixed problem for a homogeneous wave equation with fixed ends, a summable potential, and a nonzero initial velocity is studied. Using the resolvent approach and developing the Krylov method for accelerating the convergence of Fourier series, a classical solution is obtained by the Fourier method under minimal conditions on the smoothness of the initial data and a generalized solution in the case of the initial velocity represented by an arbitrary summable function is found.
Негізгі сөздер
Авторлар туралы
A. Khromov
Saratov State University
Хат алмасуға жауапты Автор.
Email: KhromovAP@info.sgu.ru
Ресей, Saratov, 410012
Қосымша файлдар
