Convergence rate estimates for Tikhonov’s scheme as applied to ill-posed nonconvex optimization problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We examine the convergence rate of approximations generated by Tikhonov’s scheme as applied to ill-posed constrained optimization problems with general smooth functionals on a convex closed subset of a Hilbert space. Assuming that the solution satisfies a source condition involving the second derivative of the cost functional and depending on the form of constraints, we establish the convergence rate of the Tikhonov approximations in the cases of exact and approximately specified functionals.

Sobre autores

M. Kokurin

Mari State University

Autor responsável pela correspondência
Email: kokurinm@yandex.ru
Rússia, Yoshkar-Ola, 424001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017