Solving boundary value problems of mathematical physics using radial basis function networks


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A neural network method for solving boundary value problems of mathematical physics is developed. In particular, based on the trust region method, a method for learning radial basis function networks is proposed that significantly reduces the time needed for tuning their parameters. A method for solving coefficient inverse problems that does not require the construction and solution of adjoint problems is proposed.

作者简介

V. Gorbachenko

Penza State University

编辑信件的主要联系方式.
Email: gorvi@mail.ru
俄罗斯联邦, Penza, 440026

M. Zhukov

Penza State University

Email: gorvi@mail.ru
俄罗斯联邦, Penza, 440026

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017