Cubic spline interpolation of functions with high gradients in boundary layers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The cubic spline interpolation of grid functions with high-gradient regions is considered. Uniform meshes are proved to be inefficient for this purpose. In the case of widely applied piecewise uniform Shishkin meshes, asymptotically sharp two-sided error estimates are obtained in the class of functions with an exponential boundary layer. It is proved that the error estimates of traditional spline interpolation are not uniform with respect to a small parameter, and the error can increase indefinitely as the small parameter tends to zero, while the number of nodes N is fixed. A modified cubic interpolation spline is proposed, for which O((ln N/N)4) error estimates that are uniform with respect to the small parameter are obtained.

Sobre autores

I. Blatov

Volga State University of Telecommunications and Informatics

Autor responsável pela correspondência
Email: blatow@mail.ru
Rússia, Samara, 443090

A. Zadorin

Sobolev Institute of Mathematics (Omsk Branch), Siberian Branch

Autor responsável pela correspondência
Email: zadorin@ofim.oscsbras.ru
Rússia, Omsk, 644043

E. Kitaeva

Samara State University

Email: zadorin@ofim.oscsbras.ru
Rússia, Samara, 443086

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017