A nonlinear singular eigenvalue problem for a linear system of ordinary differential equations with redundant conditions
- Авторы: Abramov A.A.1, Yukhno L.F.2,3
-
Учреждения:
- Dorodnicyn Computing Center
- Institute of Applied Mathematics
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- Выпуск: Том 56, № 7 (2016)
- Страницы: 1264-1268
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/178558
- DOI: https://doi.org/10.1134/S0965542516070022
- ID: 178558
Цитировать
Аннотация
A nonlinear eigenvalue problem for a linear system of ordinary differential equations is examined on a semi-infinite interval. The problem is supplemented by nonlocal conditions specified by a Stieltjes integral. At infinity, the solution must be bounded. In addition to these basic conditions, the solution must satisfy certain redundant conditions, which are also nonlocal. A numerically stable method for solving such a singular overdetermined eigenvalue problem is proposed and analyzed. The essence of the method is that this overdetermined problem is replaced by an auxiliary problem consistent with all the above conditions.
Об авторах
A. Abramov
Dorodnicyn Computing Center
Автор, ответственный за переписку.
Email: alalabr@ccas.ru
Россия, ul. Vavilova 40, Moscow, 119333
L. Yukhno
Institute of Applied Mathematics; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: alalabr@ccas.ru
Россия, Miusskaya pl. 4a, Moscow, 125047; Kashirskoe sh. 31, Moscow, 115409
Дополнительные файлы
