On the complexity and approximability of some Euclidean optimal summing problems
- Авторы: Eremeev A.V.1,2, Kel’manov A.V.1,3, Pyatkin A.V.1,3
-
Учреждения:
- Sobolev Institute of Mathematics, Siberian Branch
- Omsk State University
- Novosibirsk State University
- Выпуск: Том 56, № 10 (2016)
- Страницы: 1813-1817
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/178741
- DOI: https://doi.org/10.1134/S0965542516100080
- ID: 178741
Цитировать
Аннотация
The complexity status of several well-known discrete optimization problems with the direction of optimization switching from maximum to minimum is analyzed. The task is to find a subset of a finite set of Euclidean points (vectors). In these problems, the objective functions depend either only on the norm of the sum of the elements from the subset or on this norm and the cardinality of the subset. It is proved that, if the dimension of the space is a part of the input, then all these problems are strongly NP-hard. Additionally, it is shown that, if the space dimension is fixed, then all the problems are NP-hard even for dimension 2 (on a plane) and there are no approximation algorithms with a guaranteed accuracy bound for them unless P = NP. It is shown that, if the coordinates of the input points are integer, then all the problems can be solved in pseudopolynomial time in the case of a fixed space dimension.
Об авторах
A. Eremeev
Sobolev Institute of Mathematics, Siberian Branch; Omsk State University
Автор, ответственный за переписку.
Email: eremeev@ofim.oscsbras.ru
Россия, Novosibirsk, 630090; Omsk, 644077
A. Kel’manov
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: eremeev@ofim.oscsbras.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630090
A. Pyatkin
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: eremeev@ofim.oscsbras.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630090
Дополнительные файлы
