On the complexity and approximability of some Euclidean optimal summing problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The complexity status of several well-known discrete optimization problems with the direction of optimization switching from maximum to minimum is analyzed. The task is to find a subset of a finite set of Euclidean points (vectors). In these problems, the objective functions depend either only on the norm of the sum of the elements from the subset or on this norm and the cardinality of the subset. It is proved that, if the dimension of the space is a part of the input, then all these problems are strongly NP-hard. Additionally, it is shown that, if the space dimension is fixed, then all the problems are NP-hard even for dimension 2 (on a plane) and there are no approximation algorithms with a guaranteed accuracy bound for them unless P = NP. It is shown that, if the coordinates of the input points are integer, then all the problems can be solved in pseudopolynomial time in the case of a fixed space dimension.

作者简介

A. Eremeev

Sobolev Institute of Mathematics, Siberian Branch; Omsk State University

编辑信件的主要联系方式.
Email: eremeev@ofim.oscsbras.ru
俄罗斯联邦, Novosibirsk, 630090; Omsk, 644077

A. Kel’manov

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: eremeev@ofim.oscsbras.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

A. Pyatkin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: eremeev@ofim.oscsbras.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016