Local Algorithms for Minimizing the Force Field for 3D Representation of Macromolecules
- Авторлар: Yakovlev P.A.1, Anikin A.S.2, Bol’shakova O.A.3, Gasnikov A.V.4,5, Gornov A.Y.2, Ermak T.V.1, Makarenko D.V.4, Morozov V.P.1, Neterebskii B.O.1
-
Мекемелер:
- Biocad
- Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences
- Sirius
- Moscow Institute of Physics and Technology
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
- Шығарылым: Том 59, № 12 (2019)
- Беттер: 1994-2008
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180914
- DOI: https://doi.org/10.1134/S0965542519120030
- ID: 180914
Дәйексөз келтіру
Аннотация
The majority of problems in structural computational biology require minimization of the energy function (force field) defined on the molecule geometry. This makes it possible to determine properties of molecules, predict the correct arrangement of protein chains, find the best molecular docking for complex formation, verify hypotheses concerning the protein design, and solve other problems arising in modern drug development. In the case of low-molecular compounds (consisting of less than 250 atoms), the problem of finding the geometry that minimizes the energy function is well studied. The minimization of macromolecules (in particular, proteins) consisting of tens of thousands of atoms is more difficult. However, a distinctive feature of statements of these problems is that initial approximations that are close to the solution are often available. Therefore, the original problem can be formulated as a problem of nonconvex optimization in the space of about \({{10}^{4}}\) variables. The complexity of computing the function and its gradient is quadratic in the number variables. A comparative analysis of gradient-free methods with gradient-type methods (gradient descent, fast gradient descent, conjugate gradient, and quasi-Newton methods) in their GPU implementations is carried out.
Авторлар туралы
P. Yakovlev
Biocad
Хат алмасуға жауапты Автор.
Email: yakovlev@biocad.ru
Ресей, St. Petersburg, 198515
A. Anikin
Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: anikin@icc.ru
Ресей, Irkutsk, 664033
O. Bol’shakova
Sirius
Хат алмасуға жауапты Автор.
Email: olgab-87@yandex.ru
Ресей, Sochi, 354349
A. Gasnikov
Moscow Institute of Physics and Technology; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: gasnikov@yandex.ru
Ресей, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 127051
A. Gornov
Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: gornov@icc.ru
Ресей, Irkutsk, 664033
T. Ermak
Biocad
Хат алмасуға жауапты Автор.
Email: ermak@biocad.ru
Ресей, St. Petersburg, 198515
D. Makarenko
Moscow Institute of Physics and Technology
Хат алмасуға жауапты Автор.
Email: devjiu@gmail.com
Ресей, Dolgoprudnyi, Moscow oblast, 141700
V. Morozov
Biocad
Хат алмасуға жауапты Автор.
Email: morozovvp@biocad.ru
Ресей, St. Petersburg, 198515
B. Neterebskii
Biocad
Хат алмасуға жауапты Автор.
Email: neterebskiy@biocad.ru
Ресей, St. Petersburg, 198515
Қосымша файлдар
