Methods for Nonnegative Matrix Factorization Based on Low-Rank Cross Approximations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Available methods for nonnegative matrix factorization make use of all elements of the original \(m \times n\) matrix, and their complexity is at least \(O(mn),\) which makes them extremely resource-intensive in the case of large amounts of data. Accordingly, the following natural question arises: given the nonnegative rank of a matrix, can a nonnegative matrix factorization be constructed using some of its rows and columns? Methods for solving this problem are proposed for certain classes of matrices, namely, for nonnegative separable matrices (for which there exists a cone spanned by several columns of the original matrix that contains all its columns), for nonnegative separable matrices with perturbations, and for nonnegative matrices of rank 2. In practice, the number of operations and the amount of storage used by the proposed algorithms depend linearly on \(m + n\).

Авторлар туралы

E. Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: eugene.tyrtyshnikov@gmail.com
Ресей, Moscow, 119333

E. Shcherbakova

Faculty of Computational Mathematics and Cybernetics, Moscow State University

Хат алмасуға жауапты Автор.
Email: lena19592@mail.ru
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019