A New Algorithm for a Posteriori Error Estimation for Approximate Solutions of Linear Ill-Posed Problems
- Авторлар: Leonov A.S.1
-
Мекемелер:
- National Research Nuclear University “MEPhI”
- Шығарылым: Том 59, № 2 (2019)
- Беттер: 193-200
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180384
- DOI: https://doi.org/10.1134/S0965542519020106
- ID: 180384
Дәйексөз келтіру
Аннотация
A new algorithm for a posteriori estimation of the error in solutions to linear operator equations of the first kind in a Hilbert space is proposed and justified. The algorithm reduces the variational problem of a posteriori error estimation to two special problems of maximizing smooth functionals under smooth constraints. A finite-dimensional version of the algorithm is considered. The results of a numerical experiment concerning a posteriori error estimation for a typical inverse problem are presented. It is shown experimentally that the computation time required by the algorithm is less, on average, by a factor of 1.4 than in earlier proposed methods.
Негізгі сөздер
Авторлар туралы
A. Leonov
National Research Nuclear University “MEPhI”
Хат алмасуға жауапты Автор.
Email: asleonov@mephi.ru
Ресей, Moscow, 115409
Қосымша файлдар
