Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Monotonic Nonlinearity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A singularly perturbed parabolic equation

\({\varepsilon ^2}\left( {{{\text{a}}^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} - \frac{{\partial u}}{{\partial t}}} \right) = F\left( {u,x,t,\varepsilon } \right)\)
is considered in a rectangle with boundary conditions of the first kind. The function F at the corner points of the rectangle is assumed to be monotonic with respect to the variable u on the interval from the root of the degenerate equation to the boundary condition. A complete asymptotic expansion of the solution as ε → 0 is constructed, and its uniformity in the closed rectangle is proven.

作者简介

I. Denisov

Tula State Pedagogical University

编辑信件的主要联系方式.
Email: den_tspu@mail.ru
俄罗斯联邦, Tula, 300026

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018