Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Monotonic Nonlinearity
- 作者: Denisov I.V.1
-
隶属关系:
- Tula State Pedagogical University
- 期: 卷 58, 编号 4 (2018)
- 页面: 562-571
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180159
- DOI: https://doi.org/10.1134/S0965542518040097
- ID: 180159
如何引用文章
详细
A singularly perturbed parabolic equation
\({\varepsilon ^2}\left( {{{\text{a}}^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} - \frac{{\partial u}}{{\partial t}}} \right) = F\left( {u,x,t,\varepsilon } \right)\)![]()
is considered in a rectangle with boundary conditions of the first kind. The function F at the corner points of the rectangle is assumed to be monotonic with respect to the variable u on the interval from the root of the degenerate equation to the boundary condition. A complete asymptotic expansion of the solution as ε → 0 is constructed, and its uniformity in the closed rectangle is proven.作者简介
I. Denisov
Tula State Pedagogical University
编辑信件的主要联系方式.
Email: den_tspu@mail.ru
俄罗斯联邦, Tula, 300026
补充文件
